IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0145316.html
   My bibliography  Save this article

High Throughput qPCR Expression Profiling of Circulating MicroRNAs Reveals Minimal Sex- and Sample Timing-Related Variation in Plasma of Healthy Volunteers

Author

Listed:
  • Catherine Mooney
  • Rana Raoof
  • Hany El-Naggar
  • Amaya Sanz-Rodriguez
  • Eva M Jimenez-Mateos
  • David C Henshall

Abstract

MicroRNAs are a class of small non-coding RNA that regulate gene expression at a post-transcriptional level. MicroRNAs have been identified in various body fluids under normal conditions and their stability as well as their dysregulation in disease opens up a new field for biomarker study. However, diurnal and day-to-day variation in plasma microRNA levels, and differential regulation between males and females, may affect biomarker stability. A QuantStudio 12K Flex Real-Time PCR System was used to profile plasma microRNA levels using OpenArray in male and female healthy volunteers, in the morning and afternoon, and at four time points over a one month period. Using this system we were able to run four OpenArray plates in a single run, the equivalent of 32 traditional 384-well qPCR plates or 12,000 data points. Up to 754 microRNAs can be identified in a single plasma sample in under two hours. 108 individual microRNAs were identified in at least 80% of all our samples which compares favourably with other reports of microRNA profiles in serum or plasma in healthy adults. Many of these microRNAs, including miR-16-5p, miR-17-5p, miR-19a-3p, miR-24-3p, miR-30c-5p, miR-191-5p, miR-223-3p and miR-451a are highly expressed and consistent with previous studies using other platforms. Overall, microRNA levels were very consistent between individuals, males and females, and time points and we did not detect significant differences in levels of microRNAs. These results suggest the suitability of this platform for microRNA profiling and biomarker discovery and suggest minimal confounding influence of sex or sample timing. However, the platform has not been subjected to rigorous validation which must be demonstrated in future biomarker studies where large differences may exist between disease and control samples.

Suggested Citation

  • Catherine Mooney & Rana Raoof & Hany El-Naggar & Amaya Sanz-Rodriguez & Eva M Jimenez-Mateos & David C Henshall, 2015. "High Throughput qPCR Expression Profiling of Circulating MicroRNAs Reveals Minimal Sex- and Sample Timing-Related Variation in Plasma of Healthy Volunteers," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-20, December.
  • Handle: RePEc:plo:pone00:0145316
    DOI: 10.1371/journal.pone.0145316
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0145316
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0145316&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0145316?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chisato Kinoshita & Koji Aoyama & Nobuko Matsumura & Kazue Kikuchi-Utsumi & Masahiko Watabe & Toshio Nakaki, 2014. "Rhythmic oscillations of the microRNA miR-96-5p play a neuroprotective role by indirectly regulating glutathione levels," Nature Communications, Nature, vol. 5(1), pages 1-10, September.
    2. Huili Guo & Nicholas T. Ingolia & Jonathan S. Weissman & David P. Bartel, 2010. "Mammalian microRNAs predominantly act to decrease target mRNA levels," Nature, Nature, vol. 466(7308), pages 835-840, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Johannes Denk & Felix Oberhauser & Johannes Kornhuber & Jens Wiltfang & Klaus Fassbender & Matthias L Schroeter & Alexander E Volk & Janine Diehl-Schmid & Johannes Prudlo & Adrian Danek & Bernhard Lan, 2018. "Specific serum and CSF microRNA profiles distinguish sporadic behavioural variant of frontotemporal dementia compared with Alzheimer patients and cognitively healthy controls," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-23, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Charlotte A. Cialek & Gabriel Galindo & Tatsuya Morisaki & Ning Zhao & Taiowa A. Montgomery & Timothy J. Stasevich, 2022. "Imaging translational control by Argonaute with single-molecule resolution in live cells," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Shuangmei Tian & Ziyu Zhao & Beibei Ren & Degeng Wang, 2024. "Non-Linear Relationship between MiRNA Regulatory Activity and Binding Site Counts on Target mRNAs," Data, MDPI, vol. 9(10), pages 1-13, September.
    3. Mary P. LaPierre & Katherine Lawler & Svenja Godbersen & I. Sadaf Farooqi & Markus Stoffel, 2022. "MicroRNA-7 regulates melanocortin circuits involved in mammalian energy homeostasis," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    4. Laura Ann Jacobs & Findlay Bewicke-Copley & Mark Graham Poolman & Ryan Charles Pink & Laura Ann Mulcahy & Isabel Baker & Ellie-May Beaman & Travis Brooks & Daniel Paul Caley & William Cowling & James , 2013. "Meta-Analysis Using a Novel Database, miRStress, Reveals miRNAs That Are Frequently Associated with the Radiation and Hypoxia Stress-Responses," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-1, November.
    5. Chen-Ching Lin & Ramkrishna Mitra & Zhongming Zhao, 2014. "A Tri-Component Conservation Strategy Reveals Highly Confident MicroRNA-mRNA Interactions and Evolution of MicroRNA Regulatory Networks," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-8, July.
    6. Joel W Graff & Linda S Powers & Anne M Dickson & Jongkwang Kim & Anna C Reisetter & Ihab H Hassan & Karol Kremens & Thomas J Gross & Mary E Wilson & Martha M Monick, 2012. "Cigarette Smoking Decreases Global MicroRNA Expression in Human Alveolar Macrophages," PLOS ONE, Public Library of Science, vol. 7(8), pages 1-13, August.
    7. Urmo Võsa & Tõnu Esko & Silva Kasela & Tarmo Annilo, 2015. "Altered Gene Expression Associated with microRNA Binding Site Polymorphisms," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-24, October.
    8. Ray M Marín & Jiří Vaníček, 2012. "Optimal Use of Conservation and Accessibility Filters in MicroRNA Target Prediction," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-11, February.
    9. Agnieszka Boroń & Małgorzata Śmiarowska & Anna Grzywacz & Krzysztof Chmielowiec & Jolanta Chmielowiec & Jolanta Masiak & Tomasz Pawłowski & Dariusz Larysz & Andrzej Ciechanowicz, 2022. "Association of Polymorphism within the Putative miRNA Target Site in the 3′UTR Region of the DRD2 Gene with Neuroticism in Patients with Substance Use Disorder," IJERPH, MDPI, vol. 19(16), pages 1-21, August.
    10. Youjia Hua & Shiwei Duan & Andrea E Murmann & Niels Larsen & Jørgen Kjems & Anders H Lund & Marcus E Peter, 2011. "miRConnect: Identifying Effector Genes of miRNAs and miRNA Families in Cancer Cells," PLOS ONE, Public Library of Science, vol. 6(10), pages 1-16, October.
    11. Yasemin Oztemur & Tufan Bekmez & Alp Aydos & Isik G Yulug & Betul Bozkurt & Bala Gur Dedeoglu, 2015. "A Ranking-Based Meta-Analysis Reveals Let-7 Family as a Meta-Signature for Grade Classification in Breast Cancer," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-16, May.
    12. Evelyn Zacharewicz & Paul Della Gatta & John Reynolds & Andrew Garnham & Tamsyn Crowley & Aaron P Russell & Séverine Lamon, 2014. "Identification of MicroRNAs Linked to Regulators of Muscle Protein Synthesis and Regeneration in Young and Old Skeletal Muscle," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-25, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0145316. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.