IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0027338.html
   My bibliography  Save this article

MicroRNA Expression in Abdominal and Gluteal Adipose Tissue Is Associated with mRNA Expression Levels and Partly Genetically Driven

Author

Listed:
  • Mattias Rantalainen
  • Blanca M Herrera
  • George Nicholson
  • Rory Bowden
  • Quin F Wills
  • Josine L Min
  • Matt J Neville
  • Amy Barrett
  • Maxine Allen
  • Nigel W Rayner
  • Jan Fleckner
  • Mark I McCarthy
  • Krina T Zondervan
  • Fredrik Karpe
  • Chris C Holmes
  • Cecilia M Lindgren

Abstract

To understand how miRNAs contribute to the molecular phenotype of adipose tissues and related traits, we performed global miRNA expression profiling in subcutaneous abdominal and gluteal adipose tissue of 70 human subjects and characterised which miRNAs were differentially expressed between these tissues. We found that 12% of the miRNAs were significantly differentially expressed between abdominal and gluteal adipose tissue (FDR adjusted p

Suggested Citation

  • Mattias Rantalainen & Blanca M Herrera & George Nicholson & Rory Bowden & Quin F Wills & Josine L Min & Matt J Neville & Amy Barrett & Maxine Allen & Nigel W Rayner & Jan Fleckner & Mark I McCarthy & , 2011. "MicroRNA Expression in Abdominal and Gluteal Adipose Tissue Is Associated with mRNA Expression Levels and Partly Genetically Driven," PLOS ONE, Public Library of Science, vol. 6(11), pages 1-12, November.
  • Handle: RePEc:plo:pone00:0027338
    DOI: 10.1371/journal.pone.0027338
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0027338
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0027338&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0027338?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Huili Guo & Nicholas T. Ingolia & Jonathan S. Weissman & David P. Bartel, 2010. "Mammalian microRNAs predominantly act to decrease target mRNA levels," Nature, Nature, vol. 466(7308), pages 835-840, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Charlotte A. Cialek & Gabriel Galindo & Tatsuya Morisaki & Ning Zhao & Taiowa A. Montgomery & Timothy J. Stasevich, 2022. "Imaging translational control by Argonaute with single-molecule resolution in live cells," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Ander Muniategui & Rubén Nogales-Cadenas & Miguél Vázquez & Xabier L. Aranguren & Xabier Agirre & Aernout Luttun & Felipe Prosper & Alberto Pascual-Montano & Angel Rubio, 2012. "Quantification of miRNA-mRNA Interactions," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-10, February.
    3. Shuangmei Tian & Ziyu Zhao & Beibei Ren & Degeng Wang, 2024. "Non-Linear Relationship between MiRNA Regulatory Activity and Binding Site Counts on Target mRNAs," Data, MDPI, vol. 9(10), pages 1-13, September.
    4. Mary P. LaPierre & Katherine Lawler & Svenja Godbersen & I. Sadaf Farooqi & Markus Stoffel, 2022. "MicroRNA-7 regulates melanocortin circuits involved in mammalian energy homeostasis," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    5. Laura Ann Jacobs & Findlay Bewicke-Copley & Mark Graham Poolman & Ryan Charles Pink & Laura Ann Mulcahy & Isabel Baker & Ellie-May Beaman & Travis Brooks & Daniel Paul Caley & William Cowling & James , 2013. "Meta-Analysis Using a Novel Database, miRStress, Reveals miRNAs That Are Frequently Associated with the Radiation and Hypoxia Stress-Responses," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-1, November.
    6. Chen-Ching Lin & Ramkrishna Mitra & Zhongming Zhao, 2014. "A Tri-Component Conservation Strategy Reveals Highly Confident MicroRNA-mRNA Interactions and Evolution of MicroRNA Regulatory Networks," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-8, July.
    7. Joel W Graff & Linda S Powers & Anne M Dickson & Jongkwang Kim & Anna C Reisetter & Ihab H Hassan & Karol Kremens & Thomas J Gross & Mary E Wilson & Martha M Monick, 2012. "Cigarette Smoking Decreases Global MicroRNA Expression in Human Alveolar Macrophages," PLOS ONE, Public Library of Science, vol. 7(8), pages 1-13, August.
    8. Urmo Võsa & Tõnu Esko & Silva Kasela & Tarmo Annilo, 2015. "Altered Gene Expression Associated with microRNA Binding Site Polymorphisms," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-24, October.
    9. Ray M Marín & Jiří Vaníček, 2012. "Optimal Use of Conservation and Accessibility Filters in MicroRNA Target Prediction," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-11, February.
    10. Agnieszka Boroń & Małgorzata Śmiarowska & Anna Grzywacz & Krzysztof Chmielowiec & Jolanta Chmielowiec & Jolanta Masiak & Tomasz Pawłowski & Dariusz Larysz & Andrzej Ciechanowicz, 2022. "Association of Polymorphism within the Putative miRNA Target Site in the 3′UTR Region of the DRD2 Gene with Neuroticism in Patients with Substance Use Disorder," IJERPH, MDPI, vol. 19(16), pages 1-21, August.
    11. Bahadir Ozdemir & Wael Abd-Almageed & Stephanie Roessler & Xin Wei Wang, 2013. "iSubgraph: Integrative Genomics for Subgroup Discovery in Hepatocellular Carcinoma Using Graph Mining and Mixture Models," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-16, November.
    12. Youjia Hua & Shiwei Duan & Andrea E Murmann & Niels Larsen & Jørgen Kjems & Anders H Lund & Marcus E Peter, 2011. "miRConnect: Identifying Effector Genes of miRNAs and miRNA Families in Cancer Cells," PLOS ONE, Public Library of Science, vol. 6(10), pages 1-16, October.
    13. Yasemin Oztemur & Tufan Bekmez & Alp Aydos & Isik G Yulug & Betul Bozkurt & Bala Gur Dedeoglu, 2015. "A Ranking-Based Meta-Analysis Reveals Let-7 Family as a Meta-Signature for Grade Classification in Breast Cancer," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-16, May.
    14. Evelyn Zacharewicz & Paul Della Gatta & John Reynolds & Andrew Garnham & Tamsyn Crowley & Aaron P Russell & Séverine Lamon, 2014. "Identification of MicroRNAs Linked to Regulators of Muscle Protein Synthesis and Regeneration in Young and Old Skeletal Muscle," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-25, December.
    15. Catherine Mooney & Rana Raoof & Hany El-Naggar & Amaya Sanz-Rodriguez & Eva M Jimenez-Mateos & David C Henshall, 2015. "High Throughput qPCR Expression Profiling of Circulating MicroRNAs Reveals Minimal Sex- and Sample Timing-Related Variation in Plasma of Healthy Volunteers," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-20, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0027338. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.