Author
Listed:
- Johannes Denk
- Felix Oberhauser
- Johannes Kornhuber
- Jens Wiltfang
- Klaus Fassbender
- Matthias L Schroeter
- Alexander E Volk
- Janine Diehl-Schmid
- Johannes Prudlo
- Adrian Danek
- Bernhard Landwehrmeyer
- Martin Lauer
- Markus Otto
- Holger Jahn
- for the FTLDc study group
Abstract
Information on circulating miRNAs in frontotemporal lobar degeneration is very limited and conflicting results have complicated an interpretation in Alzheimer’s disease thus far. In the present study we I) collected samples from multiple clinical centers across Germany, II) defined 3 homogenous patient groups with high sample sizes (bvFTD n = 48, AD n = 48 and cognitively healthy controls n = 44), III) compared expression levels in both CSF and serum samples and IV) detected a limited set of miRNAs by using a MIQE compliant protocol based on SYBR-green miRCURY assays that have proven reliable to generate reproducible results. We included several quality controls that identified and reduced technical variation to increase the reliability of our data. We showed that the expression levels of circulating miRNAs measured in CSF did not correlate with levels in serum. Using cluster analysis we found expression pattern in serum that, in part, reflects the genomic organization and affiliation to a specific miRNA family and that were specifically altered in bvFTD, AD, and control groups. Applying factor analysis we identified a 3-factor model characterized by a miRNA signature that explained 80% of the variance classifying healthy controls with 97%, bvFTD with 77% and AD with 72% accuracy. MANOVA confirmed signals like miR-320a and miR-26b-5p at BH corrected significance that contributed most to discriminate bvFTD cases with 96% sensitivity and 90% specificity and AD cases with 89% sensitivity and specificity compared to healthy controls, respectively. Correlation analysis revealed that miRNAs from the 3-factor model also correlated with levels of protein biomarker amyloid-beta1-42 and phosphorylated neurofilament heavy chain, indicating their potential role in the monitoring of progressive neuronal degeneration. Our data show that miRNAs can be reproducibly measured in serum and CSF without pre-amplification and that serum includes higher expressed signals that demonstrate an overall better ability to classify bvFTD, AD and healthy controls compared to signals detected in CSF.
Suggested Citation
Johannes Denk & Felix Oberhauser & Johannes Kornhuber & Jens Wiltfang & Klaus Fassbender & Matthias L Schroeter & Alexander E Volk & Janine Diehl-Schmid & Johannes Prudlo & Adrian Danek & Bernhard Lan, 2018.
"Specific serum and CSF microRNA profiles distinguish sporadic behavioural variant of frontotemporal dementia compared with Alzheimer patients and cognitively healthy controls,"
PLOS ONE, Public Library of Science, vol. 13(5), pages 1-23, May.
Handle:
RePEc:plo:pone00:0197329
DOI: 10.1371/journal.pone.0197329
Download full text from publisher
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0197329. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.