IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0141481.html
   My bibliography  Save this article

Long-Range Correlations and Memory in the Dynamics of Internet Interdomain Routing

Author

Listed:
  • Maksim Kitsak
  • Ahmed Elmokashfi
  • Shlomo Havlin
  • Dmitri Krioukov

Abstract

Data transfer is one of the main functions of the Internet. The Internet consists of a large number of interconnected subnetworks or domains, known as Autonomous Systems (ASes). Due to privacy and other reasons the information about what route to use to reach devices within other ASes is not readily available to any given AS. The Border Gateway Protocol (BGP) is responsible for discovering and distributing this reachability information to all ASes. Since the topology of the Internet is highly dynamic, all ASes constantly exchange and update this reachability information in small chunks, known as routing control packets or BGP updates. In the view of the quick growth of the Internet there are significant concerns with the scalability of the BGP updates and the efficiency of the BGP routing in general. Motivated by these issues we conduct a systematic time series analysis of BGP update rates. We find that BGP update time series are extremely volatile, exhibit long-term correlations and memory effects, similar to seismic time series, or temperature and stock market price fluctuations. The presented statistical characterization of BGP update dynamics could serve as a basis for validation of existing and developing better models of Internet interdomain routing.

Suggested Citation

  • Maksim Kitsak & Ahmed Elmokashfi & Shlomo Havlin & Dmitri Krioukov, 2015. "Long-Range Correlations and Memory in the Dynamics of Internet Interdomain Routing," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-12, November.
  • Handle: RePEc:plo:pone00:0141481
    DOI: 10.1371/journal.pone.0141481
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0141481
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0141481&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0141481?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Marián Boguñá & Fragkiskos Papadopoulos & Dmitri Krioukov, 2010. "Sustaining the Internet with hyperbolic mapping," Nature Communications, Nature, vol. 1(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matcharashvili, Teimuraz & Elmokashfi, Ahmed & Prangishvili, Archil, 2020. "Analysis of the regularity of the Internet Interdomain Routing dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
    2. Bogachev, Mikhail I. & Kuzmenko, Alexander V. & Markelov, Oleg A. & Pyko, Nikita S. & Pyko, Svetlana A., 2023. "Approximate waiting times for queuing systems with variable long-term correlated arrival rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 614(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Zuxi & Wu, Yao & Li, Qingguang & Jin, Fengdong & Xiong, Wei, 2016. "Link prediction based on hyperbolic mapping with community structure for complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 609-623.
    2. Ma, Lili & Jiang, Xin & Wu, Kaiyuan & Zhang, Zhanli & Tang, Shaoting & Zheng, Zhiming, 2012. "Surveying network community structure in the hidden metric space," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 371-378.
    3. Wang, Zuxi & Li, Qingguang & Xiong, Wei & Jin, Fengdong & Wu, Yao, 2016. "Fast community detection based on sector edge aggregation metric model in hyperbolic space," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 178-191.
    4. Antoine Allard & M Ángeles Serrano, 2020. "Navigable maps of structural brain networks across species," PLOS Computational Biology, Public Library of Science, vol. 16(2), pages 1-20, February.
    5. Wang, Zuxi & Li, Qingguang & Jin, Fengdong & Xiong, Wei & Wu, Yao, 2016. "Hyperbolic mapping of complex networks based on community information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 455(C), pages 104-119.
    6. Huang, Wei & Chen, Shengyong & Wang, Wanliang, 2014. "Navigation in spatial networks: A survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 132-154.
    7. Maksim Kitsak & Alexander Ganin & Ahmed Elmokashfi & Hongzhu Cui & Daniel A. Eisenberg & David L. Alderson & Dmitry Korkin & Igor Linkov, 2023. "Finding shortest and nearly shortest path nodes in large substantially incomplete networks by hyperbolic mapping," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    8. Kelly B. Yancey & Matthew P. Yancey, 0. "Bipartite communities via spectral partitioning," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-34.
    9. Komjáthy, Júlia & Lodewijks, Bas, 2020. "Explosion in weighted hyperbolic random graphs and geometric inhomogeneous random graphs," Stochastic Processes and their Applications, Elsevier, vol. 130(3), pages 1309-1367.
    10. Coupier, David & Flammant, Lucas & Tran, Viet Chi, 2024. "Hyperbolic radial spanning tree," Stochastic Processes and their Applications, Elsevier, vol. 172(C).
    11. Ma, Lili, 2019. "Studying node centrality based on the hidden hyperbolic metric space of complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 426-434.
    12. Robert Jankowski & Antoine Allard & Marián Boguñá & M. Ángeles Serrano, 2023. "The D-Mercator method for the multidimensional hyperbolic embedding of real networks," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    13. Meliksah Turker & Haluk O. Bingol, 2023. "Multi-layer network approach in modeling epidemics in an urban town," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(2), pages 1-13, February.
    14. Charles Murphy & Vincent Thibeault & Antoine Allard & Patrick Desrosiers, 2024. "Duality between predictability and reconstructability in complex systems," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    15. Kelly B. Yancey & Matthew P. Yancey, 2022. "Bipartite communities via spectral partitioning," Journal of Combinatorial Optimization, Springer, vol. 44(3), pages 1995-2028, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0141481. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.