IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v452y2016icp178-191.html
   My bibliography  Save this article

Fast community detection based on sector edge aggregation metric model in hyperbolic space

Author

Listed:
  • Wang, Zuxi
  • Li, Qingguang
  • Xiong, Wei
  • Jin, Fengdong
  • Wu, Yao

Abstract

By studying the edge aggregation characteristic of nodes in hyperbolic space, Sector Edge Aggregation Metric (SEAM) model is proposed and theoretically proved in this paper. In hyperbolic disk SEAM model determines the minimum angular range of a sector which possesses the maximal edge aggregation of nodes. The set of nodes within such sector has dense internal links, which corresponds with the characteristic of community structure. Based on SEAM model, we propose a fast community detection algorithm called Greedy Optimization Modularity Algorithm (GOMA) which employs greedy optimization strategy and hyperbolic coordinates. GOMA firstly divides initial communities according to the quantitative results of sector edge aggregation given by SEAM and the nodes’ hyperbolic coordinates, then based on greedy optimization strategy, only merges the two angular neighboring communities in hyperbolic disk to optimize the network modularity function, and consequently obtains high-quality community detection. The strategies of initial community partition and merger in hyperbolic space greatly improve the speed of searching the most optimal modularity. Experimental results indicate that GOMA is able to detect out high-quality community structure in synthetic and real networks, and performs better when applied to the large-scale and dense networks with strong clustering.

Suggested Citation

  • Wang, Zuxi & Li, Qingguang & Xiong, Wei & Jin, Fengdong & Wu, Yao, 2016. "Fast community detection based on sector edge aggregation metric model in hyperbolic space," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 178-191.
  • Handle: RePEc:eee:phsmap:v:452:y:2016:i:c:p:178-191
    DOI: 10.1016/j.physa.2016.01.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437116000595
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2016.01.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, X. & Murata, T., 2010. "Advanced modularity-specialized label propagation algorithm for detecting communities in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(7), pages 1493-1500.
    2. Marián Boguñá & Fragkiskos Papadopoulos & Dmitri Krioukov, 2010. "Sustaining the Internet with hyperbolic mapping," Nature Communications, Nature, vol. 1(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Balogh, Sámuel G. & Palla, Gergely, 2024. "Intra-community link formation and modularity in ultracold growing hyperbolic networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 642(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shang, Ronghua & Zhang, Weitong & Jiao, Licheng & Stolkin, Rustam & Xue, Yu, 2017. "A community integration strategy based on an improved modularity density increment for large-scale networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 471-485.
    2. Lin, Zhen & Zheng, Xiaolin & Xin, Nan & Chen, Deren, 2014. "CK-LPA: Efficient community detection algorithm based on label propagation with community kernel," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 386-399.
    3. Li, Wei & Huang, Ce & Wang, Miao & Chen, Xi, 2017. "Stepping community detection algorithm based on label propagation and similarity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 472(C), pages 145-155.
    4. Rizman Žalik, Krista & Žalik, Borut, 2014. "A local multiresolution algorithm for detecting communities of unbalanced structures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 407(C), pages 380-393.
    5. Wang, Zuxi & Wu, Yao & Li, Qingguang & Jin, Fengdong & Xiong, Wei, 2016. "Link prediction based on hyperbolic mapping with community structure for complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 609-623.
    6. Ma, Lili & Jiang, Xin & Wu, Kaiyuan & Zhang, Zhanli & Tang, Shaoting & Zheng, Zhiming, 2012. "Surveying network community structure in the hidden metric space," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 371-378.
    7. Antoine Allard & M Ángeles Serrano, 2020. "Navigable maps of structural brain networks across species," PLOS Computational Biology, Public Library of Science, vol. 16(2), pages 1-20, February.
    8. Wang, Zuxi & Li, Qingguang & Jin, Fengdong & Xiong, Wei & Wu, Yao, 2016. "Hyperbolic mapping of complex networks based on community information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 455(C), pages 104-119.
    9. Huang, Wei & Chen, Shengyong & Wang, Wanliang, 2014. "Navigation in spatial networks: A survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 132-154.
    10. Maksim Kitsak & Alexander Ganin & Ahmed Elmokashfi & Hongzhu Cui & Daniel A. Eisenberg & David L. Alderson & Dmitry Korkin & Igor Linkov, 2023. "Finding shortest and nearly shortest path nodes in large substantially incomplete networks by hyperbolic mapping," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    11. Kelly B. Yancey & Matthew P. Yancey, 0. "Bipartite communities via spectral partitioning," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-34.
    12. Komjáthy, Júlia & Lodewijks, Bas, 2020. "Explosion in weighted hyperbolic random graphs and geometric inhomogeneous random graphs," Stochastic Processes and their Applications, Elsevier, vol. 130(3), pages 1309-1367.
    13. Maksim Kitsak & Ahmed Elmokashfi & Shlomo Havlin & Dmitri Krioukov, 2015. "Long-Range Correlations and Memory in the Dynamics of Internet Interdomain Routing," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-12, November.
    14. Chuanjun Zhao & Suge Wang & Deyu Li, 2016. "Determining Fuzzy Membership for Sentiment Classification: A Three-Layer Sentiment Propagation Model," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-32, November.
    15. Laassem, Brahim & Idarrou, Ali & Boujlaleb, Loubna & Iggane, M’bark, 2022. "Label propagation algorithm for community detection based on Coulomb’s law," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    16. Sun, Heli & Liu, Jiao & Huang, Jianbin & Wang, Guangtao & Yang, Zhou & Song, Qinbao & Jia, Xiaolin, 2015. "CenLP: A centrality-based label propagation algorithm for community detection in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 767-780.
    17. Fang, Wenyi & Wang, Xin & Liu, Longzhao & Wu, Zhaole & Tang, Shaoting & Zheng, Zhiming, 2022. "Community detection through vector-label propagation algorithms," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    18. Garza, Sara E. & Schaeffer, Satu Elisa, 2019. "Community detection with the Label Propagation Algorithm: A survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    19. Coupier, David & Flammant, Lucas & Tran, Viet Chi, 2024. "Hyperbolic radial spanning tree," Stochastic Processes and their Applications, Elsevier, vol. 172(C).
    20. Ma, Lili, 2019. "Studying node centrality based on the hidden hyperbolic metric space of complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 426-434.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:452:y:2016:i:c:p:178-191. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.