IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v514y2019icp426-434.html
   My bibliography  Save this article

Studying node centrality based on the hidden hyperbolic metric space of complex networks

Author

Listed:
  • Ma, Lili

Abstract

With the hyperbolic model of the hidden metric space of networks, the hyperbolic DC of a node is defined, totally based on node features in the hyperbolic space but not directly related to network structures. The effectiveness of the hyperbolic DC in forecasting the true importance ranking of nodes in the network structure is studied. Simulations on the forecasting accuracy show it has a certain effectiveness in forecasting a few of the most important nodes, which provides possibility to carry out targeted attacks on networks without knowing any information of network structures. Moreover, for random attacks, a mechanism based on the hyperbolic DC is designed to enhance the destructive power, and the macro-matching degree is proposed to measure the effectiveness of the mechanism. Simulations show when parameter β is not big, the mechanism has quite good performance, and the smaller the value of β, the more effective the mechanism. Furthermore, for parameters in the hyperbolic model, their influences on the mechanism are researched. Results show temperature has more obvious influences than curvature, and the mechanism is found to become more effective when temperature becomes lower. According to the relationship between temperature and the clustering feature of the network, the research indicates our mechanism for random attacks should be effective for most real-world networks.

Suggested Citation

  • Ma, Lili, 2019. "Studying node centrality based on the hidden hyperbolic metric space of complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 426-434.
  • Handle: RePEc:eee:phsmap:v:514:y:2019:i:c:p:426-434
    DOI: 10.1016/j.physa.2018.09.099
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118312329
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.09.099?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marián Boguñá & Fragkiskos Papadopoulos & Dmitri Krioukov, 2010. "Sustaining the Internet with hyperbolic mapping," Nature Communications, Nature, vol. 1(1), pages 1-8, December.
    2. Réka Albert & Hawoong Jeong & Albert-László Barabási, 2000. "Error and attack tolerance of complex networks," Nature, Nature, vol. 406(6794), pages 378-382, July.
    3. Flaviano Morone & Hernán A. Makse, 2015. "Influence maximization in complex networks through optimal percolation," Nature, Nature, vol. 524(7563), pages 65-68, August.
    4. Jon M. Kleinberg, 2000. "Navigation in a small world," Nature, Nature, vol. 406(6798), pages 845-845, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gangwal, Utkarsh & Singh, Mayank & Pandey, Pradumn Kumar & Kamboj, Deepak & Chatterjee, Samrat & Bhatia, Udit, 2022. "Identifying early-warning indicators of onset of sudden collapse in networked infrastructure systems against sequential disruptions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 591(C).
    2. Khalid Bakhshaliyev & Mehmet Hadi Gunes, 2020. "Generation of 2-mode scale-free graphs for link-level internet topology modeling," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-23, November.
    3. Wang, Zhixiao & Zhao, Ya & Xi, Jingke & Du, Changjiang, 2016. "Fast ranking influential nodes in complex networks using a k-shell iteration factor," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 171-181.
    4. P.B., Divya & Lekha, Divya Sindhu & Johnson, T.P. & Balakrishnan, Kannan, 2022. "Vulnerability of link-weighted complex networks in central attacks and fallback strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 590(C).
    5. Li Zeng & Changjun Fan & Chao Chen, 2023. "Leveraging Minimum Nodes for Optimum Key Player Identification in Complex Networks: A Deep Reinforcement Learning Strategy with Structured Reward Shaping," Mathematics, MDPI, vol. 11(17), pages 1-13, August.
    6. Liu, Xiaoxiao & Sun, Shiwen & Wang, Jiawei & Xia, Chengyi, 2019. "Onion structure optimizes attack robustness of interdependent networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    7. Zhang, Dayong & Men, Hao & Zhang, Zhaoxin, 2024. "Assessing the stability of collaboration networks: A structural cohesion analysis perspective," Journal of Informetrics, Elsevier, vol. 18(1).
    8. Sun, Peng Gang & Che, Wanping & Quan, Yining & Wang, Shuzhen & Miao, Qiguang, 2022. "Random networks are heterogeneous exhibiting a multi-scaling law," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 587(C).
    9. Peng, Peng & Poon, Jessie P.H. & Yang, Yu & Lu, Feng & Cheng, Shifen, 2019. "Global oil traffic network and diffusion of influence among ports using real time data," Energy, Elsevier, vol. 172(C), pages 333-342.
    10. Luka Naglić & Lovro Šubelj, 2019. "War pact model of shrinking networks," PLOS ONE, Public Library of Science, vol. 14(10), pages 1-14, October.
    11. Meliksah Turker & Haluk O. Bingol, 2023. "Multi-layer network approach in modeling epidemics in an urban town," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(2), pages 1-13, February.
    12. Meisam Akbarzadeh & Soroush Memarmontazerin & Sybil Derrible & Sayed Farzin Salehi Reihani, 2019. "The role of travel demand and network centrality on the connectivity and resilience of an urban street system," Transportation, Springer, vol. 46(4), pages 1127-1141, August.
    13. Feng, Zhidan & Song, Huimin & Qi, Xingqin, 2024. "A novel algorithm for the generalized network dismantling problem based on dynamic programming," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    14. Alexandru Topîrceanu, 2022. "Benchmarking Cost-Effective Opinion Injection Strategies in Complex Networks," Mathematics, MDPI, vol. 10(12), pages 1-16, June.
    15. Blagus, Neli & Šubelj, Lovro & Bajec, Marko, 2012. "Self-similar scaling of density in complex real-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2794-2802.
    16. Wu, Tao & Xian, Xingping & Zhong, Linfeng & Xiong, Xi & Stanley, H. Eugene, 2018. "Power iteration ranking via hybrid diffusion for vital nodes identification," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 802-815.
    17. Xia, Ling-Ling & Song, Yu-Rong & Li, Chan-Chan & Jiang, Guo-Ping, 2018. "Improved targeted immunization strategies based on two rounds of selection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 540-547.
    18. Jalili, Mahdi, 2011. "Error and attack tolerance of small-worldness in complex networks," Journal of Informetrics, Elsevier, vol. 5(3), pages 422-430.
    19. Ping Pei & Haihan Zhang & Huizhen Zhang & Chen Yang & Tianbo An, 2024. "Network Synchronization via Pinning Control from an Attacker-Defender Game Perspective," Mathematics, MDPI, vol. 12(12), pages 1-17, June.
    20. Zhu, Weihua & Liu, Kai & Wang, Ming & Yan, Xiaoyong, 2018. "Enhancing robustness of metro networks using strategic defense," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 1081-1091.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:514:y:2019:i:c:p:426-434. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.