IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0141349.html
   My bibliography  Save this article

Modulation of Closed−State Inactivation in Kv2.1/Kv6.4 Heterotetramers as Mechanism for 4−AP Induced Potentiation

Author

Listed:
  • Jeroen I Stas
  • Elke Bocksteins
  • Alain J Labro
  • Dirk J Snyders

Abstract

The voltage−gated K+ (Kv) channel subunits Kv2.1 and Kv2.2 are expressed in almost every tissue. The diversity of Kv2 current is increased by interacting with the electrically silent Kv (KvS) subunits Kv5−Kv6 and Kv8−Kv9, into functional heterotetrameric Kv2/KvS channels. These Kv2/KvS channels possess unique biophysical properties and display a more tissue-specific expression pattern, making them more desirable pharmacological and therapeutic targets. However, little is known about the pharmacological properties of these heterotetrameric complexes. We demonstrate that Kv5.1, Kv8.1 and Kv9.3 currents were inhibited differently by the channel blocker 4−aminopyridine (4−AP) compared to Kv2.1 homotetramers. In contrast, Kv6.4 currents were potentiated by 4−AP while displaying moderately increased affinities for the channel pore blockers quinidine and flecainide. We found that the 4−AP induced potentiation of Kv6.4 currents was caused by modulation of the Kv6.4−mediated closed−state inactivation: suppression by 4−AP of the Kv2.1/Kv6.4 closed−state inactivation recovered a population of Kv2.1/Kv6.4 channels that was inactivated at resting conditions, i.e. at a holding potential of −80 mV. This modulation also resulted in a slower initiation and faster recovery from closed−state inactivation. Using chimeric substitutions between Kv6.4 and Kv9.3 subunits, we demonstrated that the lower half of the S6 domain (S6c) plays a crucial role in the 4−AP induced potentiation. These results demonstrate that KvS subunits modify the pharmacological response of Kv2 subunits when assembled in heterotetramers and illustrate the potential of KvS subunits to provide unique pharmacological properties to the heterotetramers, as is the case for 4−AP on Kv2.1/Kv6.4 channels.

Suggested Citation

  • Jeroen I Stas & Elke Bocksteins & Alain J Labro & Dirk J Snyders, 2015. "Modulation of Closed−State Inactivation in Kv2.1/Kv6.4 Heterotetramers as Mechanism for 4−AP Induced Potentiation," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-21, October.
  • Handle: RePEc:plo:pone00:0141349
    DOI: 10.1371/journal.pone.0141349
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0141349
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0141349&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0141349?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Luis G. Cuello & Vishwanath Jogini & D. Marien Cortes & Albert C. Pan & Dominique G. Gagnon & Olivier Dalmas & Julio F. Cordero-Morales & Sudha Chakrapani & Benoît Roux & Eduardo Perozo, 2010. "Structural basis for the coupling between activation and inactivation gates in K+ channels," Nature, Nature, vol. 466(7303), pages 272-275, July.
    2. Luis G. Cuello & Vishwanath Jogini & D. Marien Cortes & Eduardo Perozo, 2010. "Structural mechanism of C-type inactivation in K+ channels," Nature, Nature, vol. 466(7303), pages 203-208, July.
    3. Elke Bocksteins & Alain J Labro & Dirk J Snyders & Durga P Mohapatra, 2012. "The Electrically Silent Kv6.4 Subunit Confers Hyperpolarized Gating Charge Movement in Kv2.1/Kv6.4 Heterotetrameric Channels," PLOS ONE, Public Library of Science, vol. 7(5), pages 1-7, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Purushotham Selvakumar & Ana I. Fernández-Mariño & Nandish Khanra & Changhao He & Alice J. Paquette & Bing Wang & Ruiqi Huang & Vaughn V. Smider & William J. Rice & Kenton J. Swartz & Joel R. Meyerson, 2022. "Structures of the T cell potassium channel Kv1.3 with immunoglobulin modulators," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Ahmed Rohaim & Bram J. A. Vermeulen & Jing Li & Felix Kümmerer & Federico Napoli & Lydia Blachowicz & João Medeiros-Silva & Benoît Roux & Markus Weingarth, 2022. "A distinct mechanism of C-type inactivation in the Kv-like KcsA mutant E71V," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    3. Adam Lewis & Vilius Kurauskas & Marco Tonelli & Katherine Henzler-Wildman, 2021. "Ion-dependent structure, dynamics, and allosteric coupling in a non-selective cation channel," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    4. Philipp A. M. Schmidpeter & John T. Petroff & Leila Khajoueinejad & Aboubacar Wague & Cheryl Frankfater & Wayland W. L. Cheng & Crina M. Nimigean & Paul M. Riegelhaupt, 2023. "Membrane phospholipids control gating of the mechanosensitive potassium leak channel TREK1," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    5. Cheng Zhao & Yuan Xie & Lizhen Xu & Fan Ye & Ximing Xu & Wei Yang & Fan Yang & Jiangtao Guo, 2022. "Structures of a mammalian TRPM8 in closed state," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    6. Katsumasa Irie & Yoshinori Oda & Takashi Sumikama & Atsunori Oshima & Yoshinori Fujiyoshi, 2023. "The structural basis of divalent cation block in a tetrameric prokaryotic sodium channel," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    7. Huiwen Chen & Zhanyi Xia & Jie Dong & Bo Huang & Jiangtao Zhang & Feng Zhou & Rui Yan & Yiqiang Shi & Jianke Gong & Juquan Jiang & Zhuo Huang & Daohua Jiang, 2024. "Structural mechanism of voltage-gated sodium channel slow inactivation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    8. Carus H. Y. Lau & Emelie Flood & Mark J. Hunter & Billy J. Williams-Noonan & Karen M. Corbett & Chai-Ann Ng & James C. Bouwer & Alastair G. Stewart & Eduardo Perozo & Toby W. Allen & Jamie I. Vandenbe, 2024. "Potassium dependent structural changes in the selectivity filter of HERG potassium channels," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    9. Lea C. Neelsen & Elena B. Riel & Susanne Rinné & Freya-Rebecca Schmid & Björn C. Jürs & Mauricio Bedoya & Jan P. Langer & Bisher Eymsh & Aytug K. Kiper & Sönke Cordeiro & Niels Decher & Thomas Baukrow, 2024. "Ion occupancy of the selectivity filter controls opening of a cytoplasmic gate in the K2P channel TALK-2," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    10. Tobias Linder & Bert L de Groot & Anna Stary-Weinzinger, 2013. "Probing the Energy Landscape of Activation Gating of the Bacterial Potassium Channel KcsA," PLOS Computational Biology, Public Library of Science, vol. 9(5), pages 1-9, May.
    11. Yue Wang & Yixiao Hu & Jian-Ping Guo & Jun Gao & Bo Song & Lei Jiang, 2024. "A physical derivation of high-flux ion transport in biological channel via quantum ion coherence," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    12. Mingfeng Zhang & Yuanyue Shan & Duanqing Pei, 2023. "Mechanism underlying delayed rectifying in human voltage-mediated activation Eag2 channel," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0141349. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.