IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v466y2010i7303d10.1038_nature09153.html
   My bibliography  Save this article

Structural mechanism of C-type inactivation in K+ channels

Author

Listed:
  • Luis G. Cuello

    (and Institute for Biophysical Dynamics, University of Chicago
    Present addresses: Department of Cell Physiology and Molecular Biophysics, Texas Tech University, Lubbock, Texas 79430, USA (L.G.C., D.M.C.); D. E. Shaw Research, Hyderabad 500034, India (V.J.).)

  • Vishwanath Jogini

    (and Institute for Biophysical Dynamics, University of Chicago
    Present addresses: Department of Cell Physiology and Molecular Biophysics, Texas Tech University, Lubbock, Texas 79430, USA (L.G.C., D.M.C.); D. E. Shaw Research, Hyderabad 500034, India (V.J.).)

  • D. Marien Cortes

    (and Institute for Biophysical Dynamics, University of Chicago
    Present addresses: Department of Cell Physiology and Molecular Biophysics, Texas Tech University, Lubbock, Texas 79430, USA (L.G.C., D.M.C.); D. E. Shaw Research, Hyderabad 500034, India (V.J.).)

  • Eduardo Perozo

    (and Institute for Biophysical Dynamics, University of Chicago)

Abstract

Interconversion between conductive and non-conductive forms of the K+ channel selectivity filter underlies a variety of gating events, from flicker transitions (at the microsecond timescale) to C-type inactivation (millisecond to second timescale). Here we report the crystal structure of the Streptomyces lividans K+ channel KcsA in its open-inactivated conformation and investigate the mechanism of C-type inactivation gating at the selectivity filter from channels ‘trapped’ in a series of partially open conformations. Five conformer classes were identified with openings ranging from 12 Å in closed KcsA (Cα–Cα distances at Thr 112) to 32 Å when fully open. They revealed a remarkable correlation between the degree of gate opening and the conformation and ion occupancy of the selectivity filter. We show that a gradual filter backbone reorientation leads first to a loss of the S2 ion binding site and a subsequent loss of the S3 binding site, presumably abrogating ion conduction. These structures indicate a molecular basis for C-type inactivation in K+ channels.

Suggested Citation

  • Luis G. Cuello & Vishwanath Jogini & D. Marien Cortes & Eduardo Perozo, 2010. "Structural mechanism of C-type inactivation in K+ channels," Nature, Nature, vol. 466(7303), pages 203-208, July.
  • Handle: RePEc:nat:nature:v:466:y:2010:i:7303:d:10.1038_nature09153
    DOI: 10.1038/nature09153
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature09153
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature09153?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jeroen I Stas & Elke Bocksteins & Alain J Labro & Dirk J Snyders, 2015. "Modulation of Closed−State Inactivation in Kv2.1/Kv6.4 Heterotetramers as Mechanism for 4−AP Induced Potentiation," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-21, October.
    2. Huiwen Chen & Zhanyi Xia & Jie Dong & Bo Huang & Jiangtao Zhang & Feng Zhou & Rui Yan & Yiqiang Shi & Jianke Gong & Juquan Jiang & Zhuo Huang & Daohua Jiang, 2024. "Structural mechanism of voltage-gated sodium channel slow inactivation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Cheng Zhao & Yuan Xie & Lizhen Xu & Fan Ye & Ximing Xu & Wei Yang & Fan Yang & Jiangtao Guo, 2022. "Structures of a mammalian TRPM8 in closed state," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Mingfeng Zhang & Yuanyue Shan & Duanqing Pei, 2023. "Mechanism underlying delayed rectifying in human voltage-mediated activation Eag2 channel," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Purushotham Selvakumar & Ana I. Fernández-Mariño & Nandish Khanra & Changhao He & Alice J. Paquette & Bing Wang & Ruiqi Huang & Vaughn V. Smider & William J. Rice & Kenton J. Swartz & Joel R. Meyerson, 2022. "Structures of the T cell potassium channel Kv1.3 with immunoglobulin modulators," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Carus H. Y. Lau & Emelie Flood & Mark J. Hunter & Billy J. Williams-Noonan & Karen M. Corbett & Chai-Ann Ng & James C. Bouwer & Alastair G. Stewart & Eduardo Perozo & Toby W. Allen & Jamie I. Vandenbe, 2024. "Potassium dependent structural changes in the selectivity filter of HERG potassium channels," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    7. Adam Lewis & Vilius Kurauskas & Marco Tonelli & Katherine Henzler-Wildman, 2021. "Ion-dependent structure, dynamics, and allosteric coupling in a non-selective cation channel," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    8. Ahmed Rohaim & Bram J. A. Vermeulen & Jing Li & Felix Kümmerer & Federico Napoli & Lydia Blachowicz & João Medeiros-Silva & Benoît Roux & Markus Weingarth, 2022. "A distinct mechanism of C-type inactivation in the Kv-like KcsA mutant E71V," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    9. Yue Wang & Yixiao Hu & Jian-Ping Guo & Jun Gao & Bo Song & Lei Jiang, 2024. "A physical derivation of high-flux ion transport in biological channel via quantum ion coherence," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:466:y:2010:i:7303:d:10.1038_nature09153. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.