IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0136650.html
   My bibliography  Save this article

Mammographic Breast Density and Common Genetic Variants in Breast Cancer Risk Prediction

Author

Listed:
  • Charmaine Pei Ling Lee
  • Hyungwon Choi
  • Khee Chee Soo
  • Min-Han Tan
  • Wen Yee Chay
  • Kee Seng Chia
  • Jenny Liu
  • Jingmei Li
  • Mikael Hartman

Abstract

Introduction: Known prediction models for breast cancer can potentially by improved by the addition of mammographic density and common genetic variants identified in genome-wide associations studies known to be associated with risk of the disease. We evaluated the benefit of including mammographic density and the cumulative effect of genetic variants in breast cancer risk prediction among women in a Singapore population. Methods: We estimated the risk of breast cancer using a prospective cohort of 24,161 women aged 50 to 64 from Singapore with available mammograms and known risk factors for breast cancer who were recruited between 1994 and 1997. We measured mammographic density using the medio-lateral oblique views of both breasts. Each woman’s genotype for 75 SNPs was simulated based on the genotype frequency obtained from the Breast Cancer Association Consortium data and the cumulative effect was summarized by a genetic risk score (GRS). Any improvement in the performance of our proposed prediction model versus one containing only variables from the Gail model was assessed by changes in receiver-operating characteristic and predictive values. Results: During 17 years of follow-up, 680 breast cancer cases were diagnosed. The multivariate-adjusted hazard ratios (95% confidence intervals) were 1.60 (1.22–2.10), 2.20 (1.65–2.92), 2.33 (1.71–3.20), 2.12 (1.43–3.14), and 3.27 (2.24–4.76) for the corresponding mammographic density categories: 11-20cm2, 21-30cm2, 31-40cm2, 41-50cm2, 51-60cm2, and 1.10 (1.03–1.16) for GRS. At the predicted absolute 10-year risk thresholds of 2.5% and 3.0%, a model with mammographic density and GRS could correctly identify 0.9% and 0.5% more women who would develop the disease compared to a model using only the Gail variables, respectively. Conclusion: Mammographic density and common genetic variants can improve the discriminatory power of an established breast cancer risk prediction model among females in Singapore.

Suggested Citation

  • Charmaine Pei Ling Lee & Hyungwon Choi & Khee Chee Soo & Min-Han Tan & Wen Yee Chay & Kee Seng Chia & Jenny Liu & Jingmei Li & Mikael Hartman, 2015. "Mammographic Breast Density and Common Genetic Variants in Breast Cancer Risk Prediction," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-16, September.
  • Handle: RePEc:plo:pone00:0136650
    DOI: 10.1371/journal.pone.0136650
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0136650
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0136650&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0136650?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mithat Gonen & Glenn Heller, 2005. "Concordance probability and discriminatory power in proportional hazards regression," Biometrika, Biometrika Trust, vol. 92(4), pages 965-970, December.
    2. Chuong B Do & David A Hinds & Uta Francke & Nicholas Eriksson, 2012. "Comparison of Family History and SNPs for Predicting Risk of Complex Disease," PLOS Genetics, Public Library of Science, vol. 8(10), pages 1-16, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Fanyin & Fu, Lijun & Li, Zhiyong & Xu, Jiawei, 2022. "The recurrence of financial distress: A survival analysis," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1100-1115.
    2. Lin Lu & Laurent Dercle & Binsheng Zhao & Lawrence H. Schwartz, 2021. "Deep learning for the prediction of early on-treatment response in metastatic colorectal cancer from serial medical imaging," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    3. Arazmuradov, Annageldy, 2016. "Assessing sovereign debt default by efficiency," The Journal of Economic Asymmetries, Elsevier, vol. 13(C), pages 100-113.
    4. Nuriye Sancar & Deniz Inan, 2018. "A novel method as a diagnostic tool for the detection of influential observations in the Cox proportional hazards model," Quality & Quantity: International Journal of Methodology, Springer, vol. 52(2), pages 1253-1266, December.
    5. Liu Xinhua & Jin Zhezhen, 2009. "A Non-Parametric Approach to Scale Reduction for Uni-Dimensional Screening Scales," The International Journal of Biostatistics, De Gruyter, vol. 5(1), pages 1-22, January.
    6. Chrianna I Bharat & Kevin Murray & Edward Cripps & Melinda R Hodkiewicz, 2018. "Methods for displaying and calibration of Cox proportional hazards models," Journal of Risk and Reliability, , vol. 232(1), pages 105-115, February.
    7. Sean M. Devlin & Mithat Gönen & Glenn Heller, 2020. "Measuring the temporal prognostic utility of a baseline risk score," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(4), pages 856-871, October.
    8. Yilong Zhang & Xiaoxia Han & Yongzhao Shao, 2021. "The ROC of Cox proportional hazards cure models with application in cancer studies," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(2), pages 195-215, April.
    9. Schmid, Matthias & Tutz, Gerhard & Welchowski, Thomas, 2018. "Discrimination measures for discrete time-to-event predictions," Econometrics and Statistics, Elsevier, vol. 7(C), pages 153-164.
    10. Ruosha Li & Jing Ning & Ziding Feng, 2022. "Estimation and inference of predictive discrimination for survival outcome risk prediction models," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(2), pages 219-240, April.
    11. Kenichi Hayashi & Yasutaka Shimizu, 2018. "Estimation of a Concordance Probability for Doubly Censored Time-to-Event Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 10(3), pages 546-567, December.
    12. Shengli An & Peter Zhang & Hong-Bin Fang, 2023. "Subgroup Identification in Survival Outcome Data Based on Concordance Probability Measurement," Mathematics, MDPI, vol. 11(13), pages 1-10, June.
    13. Wolf, Petra & Schmidt, Georg & Ulm, Kurt, 2011. "The use of ROC for defining the validity of the prognostic index in censored data," Statistics & Probability Letters, Elsevier, vol. 81(7), pages 783-791, July.
    14. Glenn Heller & Qianxing Mo, 2016. "Estimating the concordance probability in a survival analysis with a discrete number of risk groups," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 22(2), pages 263-279, April.
    15. Verwaeren, Jan & Waegeman, Willem & De Baets, Bernard, 2012. "Learning partial ordinal class memberships with kernel-based proportional odds models," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 928-942.
    16. Patrick Ten Eyck & Joseph E. Cavanaugh, 2018. "Model selection criteria based on cross-validatory concordance statistics," Computational Statistics, Springer, vol. 33(2), pages 595-621, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0136650. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.