IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0135332.html
   My bibliography  Save this article

MAFsnp: A Multi-Sample Accurate and Flexible SNP Caller Using Next-Generation Sequencing Data

Author

Listed:
  • Jiyuan Hu
  • Tengfei Li
  • Zidi Xiu
  • Hong Zhang

Abstract

Most existing statistical methods developed for calling single nucleotide polymorphisms (SNPs) using next-generation sequencing (NGS) data are based on Bayesian frameworks, and there does not exist any SNP caller that produces p-values for calling SNPs in a frequentist framework. To fill in this gap, we develop a new method MAFsnp, a Multiple-sample based Accurate and Flexible algorithm for calling SNPs with NGS data. MAFsnp is based on an estimated likelihood ratio test (eLRT) statistic. In practical situation, the involved parameter is very close to the boundary of the parametric space, so the standard large sample property is not suitable to evaluate the finite-sample distribution of the eLRT statistic. Observing that the distribution of the test statistic is a mixture of zero and a continuous part, we propose to model the test statistic with a novel two-parameter mixture distribution. Once the parameters in the mixture distribution are estimated, p-values can be easily calculated for detecting SNPs, and the multiple-testing corrected p-values can be used to control false discovery rate (FDR) at any pre-specified level. With simulated data, MAFsnp is shown to have much better control of FDR than the existing SNP callers. Through the application to two real datasets, MAFsnp is also shown to outperform the existing SNP callers in terms of calling accuracy. An R package “MAFsnp” implementing the new SNP caller is freely available at http://homepage.fudan.edu.cn/zhangh/softwares/.

Suggested Citation

  • Jiyuan Hu & Tengfei Li & Zidi Xiu & Hong Zhang, 2015. "MAFsnp: A Multi-Sample Accurate and Flexible SNP Caller Using Next-Generation Sequencing Data," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-15, August.
  • Handle: RePEc:plo:pone00:0135332
    DOI: 10.1371/journal.pone.0135332
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0135332
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0135332&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0135332?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shawn J. Cokus & Suhua Feng & Xiaoyu Zhang & Zugen Chen & Barry Merriman & Christian D. Haudenschild & Sriharsa Pradhan & Stanley F. Nelson & Matteo Pellegrini & Steven E. Jacobsen, 2008. "Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning," Nature, Nature, vol. 452(7184), pages 215-219, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhaohui Qin & Ben Li & Karen N. Conneely & Hao Wu & Ming Hu & Deepak Ayyala & Yongseok Park & Victor X. Jin & Fangyuan Zhang & Han Zhang & Li Li & Shili Lin, 2016. "Statistical Challenges in Analyzing Methylation and Long-Range Chromosomal Interaction Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 8(2), pages 284-309, October.
    2. Jian Fang & Jianjun Jiang & Sarah M. Leichter & Jie Liu & Mahamaya Biswal & Nelli Khudaverdyan & Xuehua Zhong & Jikui Song, 2022. "Mechanistic basis for maintenance of CHG DNA methylation in plants," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Yinwen Zhang & Hosung Jang & Rui Xiao & Ioanna Kakoulidou & Robert S. Piecyk & Frank Johannes & Robert J. Schmitz, 2021. "Heterochromatin is a quantitative trait associated with spontaneous epiallele formation," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    4. Sun Shuying & Yu Xiaoqing, 2016. "HMM-Fisher: identifying differential methylation using a hidden Markov model and Fisher’s exact test," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 15(1), pages 55-67, March.
    5. Nanshan, Muye & Zhang, Nan & Xun, Xiaolei & Cao, Jiguo, 2022. "Dynamical modeling for non-Gaussian data with high-dimensional sparse ordinary differential equations," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
    6. Lijun Wang & Xiuling You & Dengfeng Ruan & Rui Shao & Hai-Qiang Dai & Weiliang Shen & Guo-Liang Xu & Wanlu Liu & Weiguo Zou, 2022. "TET enzymes regulate skeletal development through increasing chromatin accessibility of RUNX2 target genes," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    7. Olbricht Gayla R. & Craig Bruce A. & Doerge Rebecca W., 2012. "Incorporating Genomic Annotation into a Hidden Markov Model for DNA Methylation Tiling Array Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(5), pages 1-37, November.
    8. Peng Ni & Neng Huang & Fan Nie & Jun Zhang & Zhi Zhang & Bo Wu & Lu Bai & Wende Liu & Chuan-Le Xiao & Feng Luo & Jianxin Wang, 2021. "Genome-wide detection of cytosine methylations in plant from Nanopore data using deep learning," Nature Communications, Nature, vol. 12(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0135332. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.