IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v452y2008i7184d10.1038_nature06745.html
   My bibliography  Save this article

Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning

Author

Listed:
  • Shawn J. Cokus

    (Cell, and Developmental Biology)

  • Suhua Feng

    (Cell, and Developmental Biology
    Howard Hughes Medical Institute,)

  • Xiaoyu Zhang

    (Cell, and Developmental Biology
    Present address: Department of Plant Biology, University of Georgia, Athens, Georgia 30602, USA.)

  • Zugen Chen

    (David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA)

  • Barry Merriman

    (David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA)

  • Christian D. Haudenschild

    (Illumina Inc., Hayward, California 94545, USA)

  • Sriharsa Pradhan

    (New England BioLabs, Ipswich, Massachusetts 01938, USA)

  • Stanley F. Nelson

    (David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA)

  • Matteo Pellegrini

    (Cell, and Developmental Biology)

  • Steven E. Jacobsen

    (Cell, and Developmental Biology
    Howard Hughes Medical Institute,)

Abstract

Mapping the methylome A newly developed method of characterizing an organism's 'methylome', that is the pattern of DNA methylation in the genome, has been used to generate a map of methylated cytosines in Arabidopsis to single base-pair resolution. The procedure, termed BS-Seq, combines bisulphite treatment of genomic DNA with ultra-high-throughput DNA sequencing to achieve a more precise and comprehensive result than previously possible. DNA methylation is an important factor in regulating gene expression, and this method, which can be applied to larger genomes like the mouse as well as to Arabidopsis, could prove a significant advance in the study of this form of gene regulation.

Suggested Citation

  • Shawn J. Cokus & Suhua Feng & Xiaoyu Zhang & Zugen Chen & Barry Merriman & Christian D. Haudenschild & Sriharsa Pradhan & Stanley F. Nelson & Matteo Pellegrini & Steven E. Jacobsen, 2008. "Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning," Nature, Nature, vol. 452(7184), pages 215-219, March.
  • Handle: RePEc:nat:nature:v:452:y:2008:i:7184:d:10.1038_nature06745
    DOI: 10.1038/nature06745
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature06745
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature06745?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nanshan, Muye & Zhang, Nan & Xun, Xiaolei & Cao, Jiguo, 2022. "Dynamical modeling for non-Gaussian data with high-dimensional sparse ordinary differential equations," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
    2. Lijun Wang & Xiuling You & Dengfeng Ruan & Rui Shao & Hai-Qiang Dai & Weiliang Shen & Guo-Liang Xu & Wanlu Liu & Weiguo Zou, 2022. "TET enzymes regulate skeletal development through increasing chromatin accessibility of RUNX2 target genes," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    3. Peng Ni & Neng Huang & Fan Nie & Jun Zhang & Zhi Zhang & Bo Wu & Lu Bai & Wende Liu & Chuan-Le Xiao & Feng Luo & Jianxin Wang, 2021. "Genome-wide detection of cytosine methylations in plant from Nanopore data using deep learning," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    4. Zhaohui Qin & Ben Li & Karen N. Conneely & Hao Wu & Ming Hu & Deepak Ayyala & Yongseok Park & Victor X. Jin & Fangyuan Zhang & Han Zhang & Li Li & Shili Lin, 2016. "Statistical Challenges in Analyzing Methylation and Long-Range Chromosomal Interaction Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 8(2), pages 284-309, October.
    5. Olbricht Gayla R. & Craig Bruce A. & Doerge Rebecca W., 2012. "Incorporating Genomic Annotation into a Hidden Markov Model for DNA Methylation Tiling Array Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(5), pages 1-37, November.
    6. Sun Shuying & Yu Xiaoqing, 2016. "HMM-Fisher: identifying differential methylation using a hidden Markov model and Fisher’s exact test," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 15(1), pages 55-67, March.
    7. Jian Fang & Jianjun Jiang & Sarah M. Leichter & Jie Liu & Mahamaya Biswal & Nelli Khudaverdyan & Xuehua Zhong & Jikui Song, 2022. "Mechanistic basis for maintenance of CHG DNA methylation in plants," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    8. Jiyuan Hu & Tengfei Li & Zidi Xiu & Hong Zhang, 2015. "MAFsnp: A Multi-Sample Accurate and Flexible SNP Caller Using Next-Generation Sequencing Data," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-15, August.
    9. Yinwen Zhang & Hosung Jang & Rui Xiao & Ioanna Kakoulidou & Robert S. Piecyk & Frank Johannes & Robert J. Schmitz, 2021. "Heterochromatin is a quantitative trait associated with spontaneous epiallele formation," Nature Communications, Nature, vol. 12(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:452:y:2008:i:7184:d:10.1038_nature06745. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.