IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0134522.html
   My bibliography  Save this article

Research on Taxiway Path Optimization Based on Conflict Detection

Author

Listed:
  • Hang Zhou
  • Xinxin Jiang

Abstract

Taxiway path planning is one of the effective measures to make full use of the airport resources, and the optimized paths can ensure the safety of the aircraft during the sliding process. In this paper, the taxiway path planning based on conflict detection is considered. Specific steps are shown as follows: firstly, make an improvement on A * algorithm, the conflict detection strategy is added to search for the shortest and safe path in the static taxiway network. Then, according to the sliding speed of aircraft, a time table for each node is determined and the safety interval is treated as the constraint to judge whether there is a conflict or not. The intelligent initial path planning model is established based on the results. Finally, make an example in an airport simulation environment, detect and relieve the conflict to ensure the safety. The results indicate that the model established in this paper is effective and feasible. Meanwhile, make comparison with the improved A*algorithm and other intelligent algorithms, conclude that the improved A*algorithm has great advantages. It could not only optimize taxiway path, but also ensure the safety of the sliding process and improve the operational efficiency.

Suggested Citation

  • Hang Zhou & Xinxin Jiang, 2015. "Research on Taxiway Path Optimization Based on Conflict Detection," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-17, July.
  • Handle: RePEc:plo:pone00:0134522
    DOI: 10.1371/journal.pone.0134522
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0134522
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0134522&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0134522?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ángel Marín, 2006. "Airport management: taxi planning," Annals of Operations Research, Springer, vol. 143(1), pages 191-202, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sameeraű Galagedera & Varuna Adikariwattage & H. R. Pasindu, 2021. "Evaluation of Rapid Exit Locations Based on Veer-Off Risk for Landing Aircraft," Sustainability, MDPI, vol. 13(9), pages 1-21, May.
    2. Das, Deepjyoti & Sharma, Somesh Kumar & Parti, Raman & Singh, Jagroop, 2016. "Analyzing the effect of aviation infrastructure over aviation fuel consumption reduction," Journal of Air Transport Management, Elsevier, vol. 57(C), pages 89-100.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guépet, J. & Briant, O. & Gayon, J.P. & Acuna-Agost, R., 2016. "The aircraft ground routing problem: Analysis of industry punctuality indicators in a sustainable perspective," European Journal of Operational Research, Elsevier, vol. 248(3), pages 827-839.
    2. Mirko Giacomo & Francesco Mason & Marisa Cenci, 2020. "A note on solving the Fleet Quickest Routing Problem on a grid graph," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(3), pages 1069-1090, September.
    3. Marisa Cenci & Mirko Giacomo & Francesco Mason, 2017. "A note on a mixed routing and scheduling problem on a grid graph," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(11), pages 1363-1376, November.
    4. Samà, Marcella & D’Ariano, Andrea & D’Ariano, Paolo & Pacciarelli, Dario, 2017. "Scheduling models for optimal aircraft traffic control at busy airports: Tardiness, priorities, equity and violations considerations," Omega, Elsevier, vol. 67(C), pages 81-98.
    5. Samà, Marcella & D'Ariano, Andrea & Corman, Francesco & Pacciarelli, Dario, 2018. "Coordination of scheduling decisions in the management of airport airspace and taxiway operations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 114(PB), pages 398-411.
    6. Yin, Suwan & Han, Ke & Ochieng, Washington Yotto & Sanchez, Daniel Regueiro, 2022. "Joint apron-runway assignment for airport surface operations," Transportation Research Part B: Methodological, Elsevier, vol. 156(C), pages 76-100.
    7. Jianan Yin & Minghua Hu & Yuanyuan Ma & Ke Han & Dan Chen, 2019. "Airport Taxi Situation Awareness with a Macroscopic Distribution Network Analysis," Networks and Spatial Economics, Springer, vol. 19(3), pages 669-695, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0134522. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.