IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0126843.html
   My bibliography  Save this article

Multiplexed Component Analysis to Identify Genes Contributing to the Immune Response during Acute SIV Infection

Author

Listed:
  • Iraj Hosseini
  • Lucio Gama
  • Feilim Mac Gabhann

Abstract

Immune response genes play an important role during acute HIV and SIV infection. Using an SIV macaque model of AIDS and CNS disease, our overall goal was to assess how the expression of genes associated with immune and inflammatory responses are longitudinally changed in different organs or cells during SIV infection. To compare RNA expression of a panel of 88 immune-related genes across time points and among three tissues – spleen, mesenteric lymph nodes (MLN) and peripheral blood mononuclear cells (PBMC) – we designed a set of Nanostring probes. To identify significant genes during acute SIV infection and to investigate whether these genes are tissue-specific or have global roles, we introduce a novel multiplexed component analysis (MCA) method. This combines multivariate analysis methods with multiple preprocessing methods to create a set of 12 “judges”; each judge emphasizes particular types of change in gene expression to which cells could respond, for example, the absolute or relative size of expression change from baseline. Compared to bivariate analysis methods, our MCA method improved classification rates. This analysis allows us to identify three categories of genes: (a) consensus genes likely to contribute highly to the immune response; (b) genes that would contribute highly to the immune response only if certain assumptions are met – e.g. that the cell responds to relative expression change rather than absolute expression change; and (c) genes whose contribution to immune response appears to be modest. We then compared the results across the three tissues of interest; some genes are consistently highly-contributing in all tissues, while others are specific for certain tissues. Our analysis identified CCL8, CXCL10, CXCL11, MxA, OAS2, and OAS1 as top contributing genes, all of which are stimulated by type I interferon. This suggests that the cytokine storm during acute SIV infection is a systemic innate immune response against viral replication. Furthermore, these genes have approximately equal contributions to all tissues, making them possible candidates to be used as non-invasive biomarkers in studying PBMCs instead of MLN and spleen during acute SIV infection experiments. We identified clusters of genes that co-vary together and studied their correlation with regard to other gene clusters. We also developed novel methods to faithfully visualize multi-gene correlations on two-dimensional polar plots, and to visualize tissue specificity of gene expression responses.

Suggested Citation

  • Iraj Hosseini & Lucio Gama & Feilim Mac Gabhann, 2015. "Multiplexed Component Analysis to Identify Genes Contributing to the Immune Response during Acute SIV Infection," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-28, May.
  • Handle: RePEc:plo:pone00:0126843
    DOI: 10.1371/journal.pone.0126843
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0126843
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0126843&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0126843?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jacques Banchereau & Ralph M. Steinman, 1998. "Dendritic cells and the control of immunity," Nature, Nature, vol. 392(6673), pages 245-252, March.
    2. Adel Helmy & Chrystalina A Antoniades & Mathew R Guilfoyle & Keri L H Carpenter & Peter J Hutchinson, 2012. "Principal Component Analysis of the Cytokine and Chemokine Response to Human Traumatic Brain Injury," PLOS ONE, Public Library of Science, vol. 7(6), pages 1-14, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thanh Loc Nguyen & Youngjin Choi & Jihye Im & Hyunsu Shin & Ngoc Man Phan & Min Kyung Kim & Seung Woo Choi & Jaeyun Kim, 2022. "Immunosuppressive biomaterial-based therapeutic vaccine to treat multiple sclerosis via re-establishing immune tolerance," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    2. K. Brad Wray & Søren R. Paludan & Lutz Bornmann & Robin Haunschild, 2024. "Using Reference Publication Year Spectroscopy (RPYS) to analyze the research and publication culture in immunology," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(6), pages 3271-3283, June.
    3. Kulvinder Kochar Kaur & Gautam Allahbadia & Mandeep Singh, 2016. "Advances in the Therapy of Advanced Ovarian Cancer-Special Emphasis on the PD1/PDL1 Pathway," Current Trends in Biomedical Engineering & Biosciences, Juniper Publishers Inc., vol. 1(2), pages 32-40, December.
    4. Kalijn F. Bol & Gerty Schreibelt & Martine Bloemendal & Wouter W. Willigen & Simone Hins-de Bree & Anna L. Goede & Annemiek J. Boer & Kevin J. H. Bos & Tjitske Duiveman-de Boer & Michel A. M. Olde Nor, 2024. "Adjuvant dendritic cell therapy in stage IIIB/C melanoma: the MIND-DC randomized phase III trial," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Caroline Hoffmann & Floriane Noel & Maximilien Grandclaudon & Lucile Massenet-Regad & Paula Michea & Philemon Sirven & Lilith Faucheux & Aurore Surun & Olivier Lantz & Mylene Bohec & Jian Ye & Weihua , 2022. "PD-L1 and ICOSL discriminate human Secretory and Helper dendritic cells in cancer, allergy and autoimmunity," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    6. Dominic Henn & Dehua Zhao & Dharshan Sivaraj & Artem Trotsyuk & Clark Andrew Bonham & Katharina S. Fischer & Tim Kehl & Tobias Fehlmann & Autumn H. Greco & Hudson C. Kussie & Sylvia E. Moortgat Illouz, 2023. "Cas9-mediated knockout of Ndrg2 enhances the regenerative potential of dendritic cells for wound healing," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    7. Yael Korem & Pablo Szekely & Yuval Hart & Hila Sheftel & Jean Hausser & Avi Mayo & Michael E Rothenberg & Tomer Kalisky & Uri Alon, 2015. "Geometry of the Gene Expression Space of Individual Cells," PLOS Computational Biology, Public Library of Science, vol. 11(7), pages 1-27, July.
    8. Bangyuan Wu & Hengmin Cui & Xi Peng & Jing Fang & Zhicai Zuo & Junliang Deng & Jianying Huang, 2014. "Analysis of the Toll-Like Receptor 2-2 (TLR2-2) and TLR4 mRNA Expression in the Intestinal Mucosal Immunity of Broilers Fed on Diets Supplemented with Nickel Chloride," IJERPH, MDPI, vol. 11(1), pages 1-14, January.
    9. Sahil Inamdar & Abhirami P. Suresh & Joslyn L. Mangal & Nathan D. Ng & Alison Sundem & Christopher Wu & Kelly Lintecum & Abhirami Thumsi & Taravat Khodaei & Michelle Halim & Nicole Appel & Madhan Moha, 2023. "Rescue of dendritic cells from glycolysis inhibition improves cancer immunotherapy in mice," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0126843. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.