IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0125805.html
   My bibliography  Save this article

Hydrological Response to Land Cover Changes and Human Activities in Arid Regions Using a Geographic Information System and Remote Sensing

Author

Listed:
  • Shereif H Mahmoud
  • A A Alazba

Abstract

The hydrological response to land cover changes induced by human activities in arid regions has attracted increased research interest in recent decades. The study reported herein assessed the spatial and quantitative changes in surface runoff resulting from land cover change in the Al-Baha region of Saudi Arabia between 1990 and 2000 using an ArcGIS-surface runoff model and predicted land cover and surface runoff depth in 2030 using Markov chain analysis. Land cover maps for 1990 and 2000 were derived from satellite images using ArcGIS 10.1. The findings reveal a 26% decrease in forest and shrubland area, 28% increase in irrigated cropland, 1.5% increase in sparsely vegetated land and 0.5% increase in bare soil between 1990 and 2000. Overall, land cover changes resulted in a significant decrease in runoff depth values in most of the region. The decrease in surface runoff depth ranged from 25-106 mm/year in a 7020-km2 area, whereas the increase in such depth reached only 10 mm/year in a 243-km2 area. A maximum increase of 73 mm/year was seen in a limited area. The surface runoff depth decreased to the greatest extent in the central region of the study area due to the huge transition in land cover classes associated with the construction of 25 rainwater harvesting dams. The land cover prediction revealed a greater than twofold increase in irrigated cropland during the 2000-2030 period, whereas forest and shrubland are anticipated to occupy just 225 km2 of land area by 2030, a significant decrease from the 747 km2 they occupied in 2000. Overall, changes in land cover are predicted to result in an annual increase in irrigated cropland and dramatic decline in forest area in the study area over the next few decades. The increase in surface runoff depth is likely to have significant implications for irrigation activities.

Suggested Citation

  • Shereif H Mahmoud & A A Alazba, 2015. "Hydrological Response to Land Cover Changes and Human Activities in Arid Regions Using a Geographic Information System and Remote Sensing," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-19, April.
  • Handle: RePEc:plo:pone00:0125805
    DOI: 10.1371/journal.pone.0125805
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0125805
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0125805&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0125805?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bormann, Helge & Breuer, Lutz & Gräff, Thomas & Huisman, Johan A., 2007. "Analysing the effects of soil properties changes associated with land use changes on the simulated water balance: A comparison of three hydrological catchment models for scenario analysis," Ecological Modelling, Elsevier, vol. 209(1), pages 29-40.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Manon Navarro-Leblond & Ignacio Meléndez-Pastor & Jose Navarro-Pedreño & Ignacio Gómez Lucas, 2021. "Soil Sealing and Hydrological Changes during the Development of the University Campus of Elche (Spain)," IJERPH, MDPI, vol. 18(18), pages 1-19, September.
    2. Chidozie Charles Nnaji & Nkpa Mba Ogarekpe & Ekene Jude Nwankwo, 2022. "Temporal and spatial dynamics of land use and land cover changes in derived savannah hydrological basin of Enugu State, Nigeria," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(7), pages 9598-9622, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Holsten, Anne & Vetter, Tobias & Vohland, Katrin & Krysanova, Valentina, 2009. "Impact of climate change on soil moisture dynamics in Brandenburg with a focus on nature conservation areas," Ecological Modelling, Elsevier, vol. 220(17), pages 2076-2087.
    2. Samuel Beskow & Lloyd Norton & Carlos Mello, 2013. "Hydrological Prediction in a Tropical Watershed Dominated by Oxisols Using a Distributed Hydrological Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(2), pages 341-363, January.
    3. Glavan, Matjaž & Miličić, Vesna & Pintar, Marina, 2013. "Finding options to improve catchment water quality—Lessons learned from historical land use situations in a Mediterranean catchment in Slovenia," Ecological Modelling, Elsevier, vol. 261, pages 58-73.
    4. Tayyebi, Amin & Arsanjani, Jamal J. & Tayyebi, Amir H. & Omrani, Hichem & Moghadam, Hossein S., 2016. "Group-based crop change planning: Application of SmartScape™ spatial decision support system for resolving conflicts," Ecological Modelling, Elsevier, vol. 333(C), pages 92-100.
    5. Tianshi Pan & Lijun Zuo & Zengxiang Zhang & Xiaoli Zhao & Feifei Sun & Zijuan Zhu & Yingchun Liu, 2020. "Impact of Land Use Change on Water Conservation: A Case Study of Zhangjiakou in Yongding River," Sustainability, MDPI, vol. 13(1), pages 1-21, December.
    6. Lin Chu & Tiancheng Sun & Tianwei Wang & Zhaoxia Li & Chongfa Cai, 2018. "Evolution and Prediction of Landscape Pattern and Habitat Quality Based on CA-Markov and InVEST Model in Hubei Section of Three Gorges Reservoir Area (TGRA)," Sustainability, MDPI, vol. 10(11), pages 1-28, October.
    7. Fontana, Veronika & Radtke, Anna & Bossi Fedrigotti, Valérie & Tappeiner, Ulrike & Tasser, Erich & Zerbe, Stefan & Buchholz, Thomas, 2013. "Comparing land-use alternatives: Using the ecosystem services concept to define a multi-criteria decision analysis," Ecological Economics, Elsevier, vol. 93(C), pages 128-136.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0125805. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.