IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v209y2007i1p29-40.html
   My bibliography  Save this article

Analysing the effects of soil properties changes associated with land use changes on the simulated water balance: A comparison of three hydrological catchment models for scenario analysis

Author

Listed:
  • Bormann, Helge
  • Breuer, Lutz
  • Gräff, Thomas
  • Huisman, Johan A.

Abstract

This paper presents results of a model comparison study within the LUCHEM framework (‘assessing the impact of Land Use Change on Hydrology by Ensemble Modelling’) where the effects of land use change on catchment water balances were assessed with various hydrological catchment models. The motivation for this part of LUCHEM is that it is well known that land use changes may induce changes in soil chemical and soil physical properties (e.g. bulk density). Unfortunately the effects of land use change on soil hydraulic properties are seldom investigated directly, but some information on changes in bulk density is available. Changes in bulk density can be used as input for pedotransfer functions to derive changes in soil hydraulic model parameters. In this study, three different catchment models (SWAT, TOPLATS, WASIM) are compared with respect to their sensitivity to land use change with and without consideration of associated changes in soil parameterisation. The results reveal that different models show a different sensitivity to the change in soil parameterisation while the magnitude of absolute changes in simulated evapotranspiration and discharge is similar. SWAT calculates largest changes in the water balance in a German mesoscale catchment. TOPLATS also shows significant changes in the calculated catchment water balances as well as in the runoff generation while WASIM reacts least sensitive. While TOPLATS and WASIM show similar patterns with respect to changes in the water flows for all subcatchments and land use scenarios, SWAT results are similar for the different catchments, but show scenario specific patterns. In relation to the magnitude of the effects on simulated water flows induced by land use change, the significance of considering soil change effects depends on both, the scenario definition and on the model sensitivity to soil parameterisation. For two of the three land use scenarios representing an intensified land use, SWAT and TOPLATS simulate water balance changes in the same order of magnitude due to both, land use and soil property changes. Therefore, a consideration of changes in soil properties as part of land use change scenario analysis is recommended. Future field work needs to aim at the validation of the assumed dependency of soil hydrologic properties on land use change.

Suggested Citation

  • Bormann, Helge & Breuer, Lutz & Gräff, Thomas & Huisman, Johan A., 2007. "Analysing the effects of soil properties changes associated with land use changes on the simulated water balance: A comparison of three hydrological catchment models for scenario analysis," Ecological Modelling, Elsevier, vol. 209(1), pages 29-40.
  • Handle: RePEc:eee:ecomod:v:209:y:2007:i:1:p:29-40
    DOI: 10.1016/j.ecolmodel.2007.07.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380007003560
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2007.07.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Holsten, Anne & Vetter, Tobias & Vohland, Katrin & Krysanova, Valentina, 2009. "Impact of climate change on soil moisture dynamics in Brandenburg with a focus on nature conservation areas," Ecological Modelling, Elsevier, vol. 220(17), pages 2076-2087.
    2. Lin Chu & Tiancheng Sun & Tianwei Wang & Zhaoxia Li & Chongfa Cai, 2018. "Evolution and Prediction of Landscape Pattern and Habitat Quality Based on CA-Markov and InVEST Model in Hubei Section of Three Gorges Reservoir Area (TGRA)," Sustainability, MDPI, vol. 10(11), pages 1-28, October.
    3. Tayyebi, Amin & Arsanjani, Jamal J. & Tayyebi, Amir H. & Omrani, Hichem & Moghadam, Hossein S., 2016. "Group-based crop change planning: Application of SmartScape™ spatial decision support system for resolving conflicts," Ecological Modelling, Elsevier, vol. 333(C), pages 92-100.
    4. Samuel Beskow & Lloyd Norton & Carlos Mello, 2013. "Hydrological Prediction in a Tropical Watershed Dominated by Oxisols Using a Distributed Hydrological Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(2), pages 341-363, January.
    5. Tianshi Pan & Lijun Zuo & Zengxiang Zhang & Xiaoli Zhao & Feifei Sun & Zijuan Zhu & Yingchun Liu, 2020. "Impact of Land Use Change on Water Conservation: A Case Study of Zhangjiakou in Yongding River," Sustainability, MDPI, vol. 13(1), pages 1-21, December.
    6. Fontana, Veronika & Radtke, Anna & Bossi Fedrigotti, Valérie & Tappeiner, Ulrike & Tasser, Erich & Zerbe, Stefan & Buchholz, Thomas, 2013. "Comparing land-use alternatives: Using the ecosystem services concept to define a multi-criteria decision analysis," Ecological Economics, Elsevier, vol. 93(C), pages 128-136.
    7. Shereif H Mahmoud & A A Alazba, 2015. "Hydrological Response to Land Cover Changes and Human Activities in Arid Regions Using a Geographic Information System and Remote Sensing," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-19, April.
    8. Glavan, Matjaž & Miličić, Vesna & Pintar, Marina, 2013. "Finding options to improve catchment water quality—Lessons learned from historical land use situations in a Mediterranean catchment in Slovenia," Ecological Modelling, Elsevier, vol. 261, pages 58-73.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:209:y:2007:i:1:p:29-40. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.