IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0125140.html
   My bibliography  Save this article

What Happens after Inbreeding Avoidance? Inbreeding by Rejected Relatives and the Inclusive Fitness Benefit of Inbreeding Avoidance

Author

Listed:
  • A Bradley Duthie
  • Jane M Reid

Abstract

Avoiding inbreeding, and therefore avoiding inbreeding depression in offspring fitness, is widely assumed to be adaptive in systems with biparental reproduction. However, inbreeding can also confer an inclusive fitness benefit stemming from increased relatedness between parents and inbred offspring. Whether or not inbreeding or avoiding inbreeding is adaptive therefore depends on a balance between inbreeding depression and increased parent-offspring relatedness. Existing models of biparental inbreeding predict threshold values of inbreeding depression above which males and females should avoid inbreeding, and predict sexual conflict over inbreeding because these thresholds diverge. However, these models implicitly assume that if a focal individual avoids inbreeding, then both it and its rejected relative will subsequently outbreed. We show that relaxing this assumption of reciprocal outbreeding, and the assumption that focal individuals are themselves outbred, can substantially alter the predicted thresholds for inbreeding avoidance for focal males. Specifically, the magnitude of inbreeding depression below which inbreeding increases a focal male’s inclusive fitness increases with increasing depression in the offspring of a focal female and her alternative mate, and it decreases with increasing relatedness between a focal male and a focal female’s alternative mate, thereby altering the predicted zone of sexual conflict. Furthermore, a focal male’s inclusive fitness gain from avoiding inbreeding is reduced by indirect opportunity costs if his rejected relative breeds with another relative of his. By demonstrating that variation in relatedness and inbreeding can affect intra- and inter-sexual conflict over inbreeding, our models lead to novel predictions for family dynamics. Specifically, parent-offspring conflict over inbreeding might depend on the alternative mates of rejected relatives, and male-male competition over inbreeding might lead to mixed inbreeding strategies. Making testable quantitative predictions regarding inbreeding strategies occurring in nature will therefore require new models that explicitly capture variation in relatedness and inbreeding among interacting population members.

Suggested Citation

  • A Bradley Duthie & Jane M Reid, 2015. "What Happens after Inbreeding Avoidance? Inbreeding by Rejected Relatives and the Inclusive Fitness Benefit of Inbreeding Avoidance," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-22, April.
  • Handle: RePEc:plo:pone00:0125140
    DOI: 10.1371/journal.pone.0125140
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0125140
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0125140&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0125140?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ian G. Jamieson & Sabrina S. Taylor & Lisa N. Tracy & Hanna Kokko & Doug P. Armstrong, 2009. "Why some species of birds do not avoid inbreeding: insights from New Zealand robins and saddlebacks," Behavioral Ecology, International Society for Behavioral Ecology, vol. 20(3), pages 575-584.
    2. Ilik Saccheri & Mikko Kuussaari & Maaria Kankare & Pia Vikman & Wilhelm Fortelius & Ilkka Hanski, 1998. "Inbreeding and extinction in a butterfly metapopulation," Nature, Nature, vol. 392(6675), pages 491-494, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mengmeng Zhang & Fujun Shen & Tao Yang & Han Zhang & Yunfeng Lu & Keliang Wu & Fujun Shen & Yunfeng Lu, 2018. "Genetic Input from Wild Giant Pandas (Ailuropoda melanoleuca) into the Captive Population Simulated by OMPG Rule," JOJ Wildlife & Biodiversity, Juniper Publishers Inc., vol. 1(1), pages 6-13, December.
    2. Jarne, C. & Gómez Albarracín, F.A. & Caruso, M., 2021. "An algorithm to represent inbreeding trees," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).
    3. Patricia Brekke & Jinliang Wang & Peter M. Bennett & Phillip Cassey & Deborah A. Dawson & Gavin J. Horsburgh & John G. Ewen, 2012. "Postcopulatory mechanisms of inbreeding avoidance in the island endemic hihi (Notiomystis cincta)," Behavioral Ecology, International Society for Behavioral Ecology, vol. 23(2), pages 278-284.
    4. J Nevil Amos & Andrew F Bennett & Ralph Mac Nally & Graeme Newell & Alexandra Pavlova & James Q Radford & James R Thomson & Matt White & Paul Sunnucks, 2012. "Predicting Landscape-Genetic Consequences of Habitat Loss, Fragmentation and Mobility for Multiple Species of Woodland Birds," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-12, February.
    5. M. Heino & I. Hanski, 2000. "Evolution of Migration Rate in a Spatially Realistic Metapopulation Model," Working Papers ir00044, International Institute for Applied Systems Analysis.
    6. Rondon, Diego & Mäntyniemi, Samu & Aspi, Jouni & Kvist, Laura & Sillanpää, Mikko J., 2024. "A Bayesian multi-state model with data augmentation for estimating population size and effect of inbreeding on survival," Ecological Modelling, Elsevier, vol. 490(C).
    7. Jussi S. Alho & Céline Teplitsky & James A. Mills & John W. Yarrall & Juha Merilä, 2012. "No evidence for inbreeding avoidance through active mate choice in red-billed gulls," Behavioral Ecology, International Society for Behavioral Ecology, vol. 23(3), pages 672-675.
    8. Vortkamp, Irina & Barraquand, Frédéric & Hilker, Frank M., 2020. "Ecological Allee effects modulate optimal strategies for conservation in agricultural landscapes," Ecological Modelling, Elsevier, vol. 435(C).
    9. Adeline Loyau & Jérémie H Cornuau & Jean Clobert & Étienne Danchin, 2012. "Incestuous Sisters: Mate Preference for Brothers over Unrelated Males in Drosophila melanogaster," PLOS ONE, Public Library of Science, vol. 7(12), pages 1-6, December.
    10. Blanquart, François, 2014. "The demography of a metapopulation in an environment changing in time and space," Theoretical Population Biology, Elsevier, vol. 94(C), pages 1-9.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0125140. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.