IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0124720.html
   My bibliography  Save this article

A Modified Particle Swarm Optimization Technique for Finding Optimal Designs for Mixture Models

Author

Listed:
  • Weng Kee Wong
  • Ray-Bing Chen
  • Chien-Chih Huang
  • Weichung Wang

Abstract

Particle Swarm Optimization (PSO) is a meta-heuristic algorithm that has been shown to be successful in solving a wide variety of real and complicated optimization problems in engineering and computer science. This paper introduces a projection based PSO technique, named ProjPSO, to efficiently find different types of optimal designs, or nearly optimal designs, for mixture models with and without constraints on the components, and also for related models, like the log contrast models. We also compare the modified PSO performance with Fedorov's algorithm, a popular algorithm used to generate optimal designs, Cocktail algorithm, and the recent algorithm proposed by [1].

Suggested Citation

  • Weng Kee Wong & Ray-Bing Chen & Chien-Chih Huang & Weichung Wang, 2015. "A Modified Particle Swarm Optimization Technique for Finding Optimal Designs for Mixture Models," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-23, June.
  • Handle: RePEc:plo:pone00:0124720
    DOI: 10.1371/journal.pone.0124720
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0124720
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0124720&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0124720?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Min Yang & Stefanie Biedermann & Elina Tang, 2013. "On Optimal Designs for Nonlinear Models: A General and Efficient Algorithm," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(504), pages 1411-1420, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saeid Pooladsaz & Mahboobeh Doosti-Irani, 2024. "An algorithm for generating efficient block designs via a novel particle swarm approach," Computational Statistics, Springer, vol. 39(5), pages 2437-2449, July.
    2. García-Ródenas, Ricardo & García-García, José Carlos & López-Fidalgo, Jesús & Martín-Baos, José Ángel & Wong, Weng Kee, 2020. "A comparison of general-purpose optimization algorithms for finding optimal approximate experimental designs," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    3. Stephen J. Walsh & John J. Borkowski, 2022. "Improved G -Optimal Designs for Small Exact Response Surface Scenarios: Fast and Efficient Generation via Particle Swarm Optimization," Mathematics, MDPI, vol. 10(22), pages 1-17, November.
    4. Aiste Ruseckaite & Peter Goos & Dennis Fok, 2017. "Bayesian D-optimal choice designs for mixtures," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(2), pages 363-386, February.
    5. Masoudi, Ehsan & Holling, Heinz & Wong, Weng Kee, 2017. "Application of imperialist competitive algorithm to find minimax and standardized maximin optimal designs," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 330-345.
    6. Haoyu Wang & Chongqi Zhang, 2022. "The mixture design threshold accepting algorithm for generating $$\varvec{D}$$ D -optimal designs of the mixture models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(3), pages 345-371, April.
    7. Xiao-Dong Zhou & Yun-Juan Wang & Rong-Xian Yue, 2018. "Robust population designs for longitudinal linear regression model with a random intercept," Computational Statistics, Springer, vol. 33(2), pages 903-931, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Jun & Meng, Xiran & Wang, Yaping, 2023. "Optimal designs for semi-parametric dose-response models under random contamination," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).
    2. Belmiro P. M. Duarte, 2023. "Exact Optimal Designs of Experiments for Factorial Models via Mixed-Integer Semidefinite Programming," Mathematics, MDPI, vol. 11(4), pages 1-17, February.
    3. Duarte, Belmiro P.M. & Atkinson, Anthony C. & Granjo, Jose F.O & Oliveira, Nuno M.C, 2019. "Optimal design of experiments for liquid–liquid equilibria characterization via semidefinite programming," LSE Research Online Documents on Economics 102500, London School of Economics and Political Science, LSE Library.
    4. Haoyu Wang & Chongqi Zhang, 2022. "The mixture design threshold accepting algorithm for generating $$\varvec{D}$$ D -optimal designs of the mixture models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(3), pages 345-371, April.
    5. Lianyan Fu & Faming Ma & Zhuoxi Yu & Zhichuan Zhu, 2023. "Multiplication Algorithms for Approximate Optimal Distributions with Cost Constraints," Mathematics, MDPI, vol. 11(8), pages 1-14, April.
    6. Qing Liu & Yihui (Elina) Tang, 2015. "Construction of Heterogeneous Conjoint Choice Designs: A New Approach," Marketing Science, INFORMS, vol. 34(3), pages 346-366, May.
    7. Rosa, Samuel & Harman, Radoslav, 2022. "Computing minimum-volume enclosing ellipsoids for large datasets," Computational Statistics & Data Analysis, Elsevier, vol. 171(C).
    8. Lenka Filová & Radoslav Harman, 2020. "Ascent with quadratic assistance for the construction of exact experimental designs," Computational Statistics, Springer, vol. 35(2), pages 775-801, June.
    9. García-Ródenas, Ricardo & García-García, José Carlos & López-Fidalgo, Jesús & Martín-Baos, José Ángel & Wong, Weng Kee, 2020. "A comparison of general-purpose optimization algorithms for finding optimal approximate experimental designs," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    10. Nedka Dechkova Nikiforova & Rossella Berni & Jesús Fernando López‐Fidalgo, 2022. "Optimal approximate choice designs for a two‐step coffee choice, taste and choice again experiment," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1895-1917, November.
    11. Radoslav Harman & Eva Benková, 2017. "Barycentric algorithm for computing D-optimal size- and cost-constrained designs of experiments," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(2), pages 201-225, February.
    12. Kao, Ming-Hung & Huang, Ping-Han, 2024. "Hybrid exact-approximate design approach for sparse functional data," Computational Statistics & Data Analysis, Elsevier, vol. 190(C).
    13. Duarte, Belmiro P.M. & Atkinson, Anthony C. & Granjo, Jose F.O & Oliveira, Nuno M.C, 2022. "Optimal design of experiments for implicit models," LSE Research Online Documents on Economics 107584, London School of Economics and Political Science, LSE Library.
    14. Hyun Seung Won & Wong Weng Kee, 2015. "Multiple-Objective Optimal Designs for Studying the Dose Response Function and Interesting Dose Levels," The International Journal of Biostatistics, De Gruyter, vol. 11(2), pages 253-271, November.
    15. Chen, Ping-Yang & Chen, Ray-Bing & Chen, Yu-Shi & Wong, Weng Kee, 2023. "Numerical Methods for Finding A-optimal Designs Analytically," Econometrics and Statistics, Elsevier, vol. 28(C), pages 155-162.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0124720. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.