IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v39y2024i5d10.1007_s00180-023-01369-x.html
   My bibliography  Save this article

An algorithm for generating efficient block designs via a novel particle swarm approach

Author

Listed:
  • Saeid Pooladsaz

    (Isfahan University of Technology)

  • Mahboobeh Doosti-Irani

    (Isfahan University of Technology)

Abstract

The problem of finding optimal block designs can be formulated as a combinatorial optimization, but its resolution is still a formidable challenge. This paper presents a general and user-friendly algorithm, namely Modified Particle Swarm Optimization (MPSO), to construct optimal or near-optimal block designs. It can be used for several classes of block designs such as binary, non-binary and test-control block designs with correlated or uncorrelated observations. In order to evaluate the algorithm, we compare our results with the optimal designs presented in some published papers. An advantage of our algorithm is its independency to the sizes of blocks and the structure of correlations.

Suggested Citation

  • Saeid Pooladsaz & Mahboobeh Doosti-Irani, 2024. "An algorithm for generating efficient block designs via a novel particle swarm approach," Computational Statistics, Springer, vol. 39(5), pages 2437-2449, July.
  • Handle: RePEc:spr:compst:v:39:y:2024:i:5:d:10.1007_s00180-023-01369-x
    DOI: 10.1007/s00180-023-01369-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-023-01369-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-023-01369-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Weng Kee Wong & Ray-Bing Chen & Chien-Chih Huang & Weichung Wang, 2015. "A Modified Particle Swarm Optimization Technique for Finding Optimal Designs for Mixture Models," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-23, June.
    2. Khodsiani, R. & Pooladsaz, S., 2017. "Universal optimal block designs under hub correlation structure," Statistics & Probability Letters, Elsevier, vol. 129(C), pages 387-392.
    3. Stephen J. Walsh & John J. Borkowski, 2022. "Improved G -Optimal Designs for Small Exact Response Surface Scenarios: Fast and Efficient Generation via Particle Swarm Optimization," Mathematics, MDPI, vol. 10(22), pages 1-17, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Katarzyna Filipiak & Razieh Khodsiani & Augustyn Markiewicz, 2019. "Optimality of block designs under the model with the first-order circular autoregression," Statistical Papers, Springer, vol. 60(2), pages 427-447, April.
    2. Haoyu Wang & Chongqi Zhang, 2022. "The mixture design threshold accepting algorithm for generating $$\varvec{D}$$ D -optimal designs of the mixture models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(3), pages 345-371, April.
    3. Akram Fakhari-Esferizi & Saeid Pooladsaz, 2022. "Universally optimal balanced block designs for interference model," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(8), pages 1049-1061, November.
    4. Stephen J. Walsh & John J. Borkowski, 2022. "Improved G -Optimal Designs for Small Exact Response Surface Scenarios: Fast and Efficient Generation via Particle Swarm Optimization," Mathematics, MDPI, vol. 10(22), pages 1-17, November.
    5. García-Ródenas, Ricardo & García-García, José Carlos & López-Fidalgo, Jesús & Martín-Baos, José Ángel & Wong, Weng Kee, 2020. "A comparison of general-purpose optimization algorithms for finding optimal approximate experimental designs," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    6. Aiste Ruseckaite & Peter Goos & Dennis Fok, 2017. "Bayesian D-optimal choice designs for mixtures," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(2), pages 363-386, February.
    7. Masoudi, Ehsan & Holling, Heinz & Wong, Weng Kee, 2017. "Application of imperialist competitive algorithm to find minimax and standardized maximin optimal designs," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 330-345.
    8. Xiao-Dong Zhou & Yun-Juan Wang & Rong-Xian Yue, 2018. "Robust population designs for longitudinal linear regression model with a random intercept," Computational Statistics, Springer, vol. 33(2), pages 903-931, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:39:y:2024:i:5:d:10.1007_s00180-023-01369-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.