IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0122731.html
   My bibliography  Save this article

Gaussian Mixture Models and Model Selection for [18F] Fluorodeoxyglucose Positron Emission Tomography Classification in Alzheimer’s Disease

Author

Listed:
  • Rui Li
  • Robert Perneczky
  • Igor Yakushev
  • Stefan Förster
  • Alexander Kurz
  • Alexander Drzezga
  • Stefan Kramer
  • Alzheimer’s Disease Neuroimaging Initiative

Abstract

We present a method to discover discriminative brain metabolism patterns in [18F] fluorodeoxyglucose positron emission tomography (PET) scans, facilitating the clinical diagnosis of Alzheimer’s disease. In the work, the term “pattern” stands for a certain brain region that characterizes a target group of patients and can be used for a classification as well as interpretation purposes. Thus, it can be understood as a so-called “region of interest (ROI)”. In the literature, an ROI is often found by a given brain atlas that defines a number of brain regions, which corresponds to an anatomical approach. The present work introduces a semi-data-driven approach that is based on learning the characteristics of the given data, given some prior anatomical knowledge. A Gaussian Mixture Model (GMM) and model selection are combined to return a clustering of voxels that may serve for the definition of ROIs. Experiments on both an in-house dataset and data of the Alzheimer’s Disease Neuroimaging Initiative (ADNI) suggest that the proposed approach arrives at a better diagnosis than a merely anatomical approach or conventional statistical hypothesis testing.

Suggested Citation

  • Rui Li & Robert Perneczky & Igor Yakushev & Stefan Förster & Alexander Kurz & Alexander Drzezga & Stefan Kramer & Alzheimer’s Disease Neuroimaging Initiative, 2015. "Gaussian Mixture Models and Model Selection for [18F] Fluorodeoxyglucose Positron Emission Tomography Classification in Alzheimer’s Disease," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-22, April.
  • Handle: RePEc:plo:pone00:0122731
    DOI: 10.1371/journal.pone.0122731
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0122731
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0122731&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0122731?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Naik, Prasad A. & Shi, Peide & Tsai, Chih-Ling, 2007. "Extending the Akaike Information Criterion to Mixture Regression Models," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 244-254, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huiyu Mao & Fukang Zhu & Yan Cui, 2020. "A generalized mixture integer-valued GARCH model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(3), pages 527-552, September.
    2. Dirick, Lore & Claeskens, Gerda & Baesens, Bart, 2015. "An Akaike information criterion for multiple event mixture cure models," European Journal of Operational Research, Elsevier, vol. 241(2), pages 449-457.
    3. Atefeh Zarei & Zahra Khodadadi & Mohsen Maleki & Karim Zare, 2023. "Robust mixture regression modeling based on two-piece scale mixtures of normal distributions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(1), pages 181-210, March.
    4. Vasu Unnava & Ashwin Aravindakshan, 2021. "How does consumer engagement evolve when brands post across multiple social media?," Journal of the Academy of Marketing Science, Springer, vol. 49(5), pages 864-881, September.
    5. Nicolas Depraetere & Martina Vandebroek, 2014. "Order selection in finite mixtures of linear regressions," Statistical Papers, Springer, vol. 55(3), pages 871-911, August.
    6. Djeutem, Edouard & Dunbar, Geoffrey R., 2022. "Uncovered return parity: Equity returns and currency returns," Journal of International Money and Finance, Elsevier, vol. 128(C).
    7. Ping Zeng & Yongyue Wei & Yang Zhao & Jin Liu & Liya Liu & Ruyang Zhang & Jianwei Gou & Shuiping Huang & Feng Chen, 2014. "Variable selection approach for zero-inflated count data via adaptive lasso," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(4), pages 879-894, April.
    8. Guoqi Qian & Yuehua Wu & Qing Shao, 2009. "A Procedure for Estimating the Number of Clusters in Logistic Regression Clustering," Journal of Classification, Springer;The Classification Society, vol. 26(2), pages 183-199, August.
    9. Hafidi, Bezza & Mkhadri, Abdallah, 2010. "The Kullback information criterion for mixture regression models," Statistics & Probability Letters, Elsevier, vol. 80(9-10), pages 807-815, May.
    10. Dalei Yu, 2016. "Conditional Akaike Information Criteria for a Class of Poisson Mixture Models with Random Effects," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(4), pages 1214-1235, December.
    11. Sandy D. Jap & Prasad A. Naik, 2008. "BidAnalyzer: A Method for Estimation and Selection of Dynamic Bidding Models," Marketing Science, INFORMS, vol. 27(6), pages 949-960, 11-12.
    12. Jaromír Kovářík & Friederike Mengel & José Gabriel Romero, 2018. "Learning in network games," Quantitative Economics, Econometric Society, vol. 9(1), pages 85-139, March.
      • Kovarik, Jaromir & Mengel, Friederike & Romero, José Gabriel, 2012. "Learning in Network Games," IKERLANAK http://www-fae1-eao1-ehu-, Universidad del País Vasco - Departamento de Fundamentos del Análisis Económico I.
    13. Marko Sarstedt & Ovidiu-Ioan Moisescu, 2024. "Quantifying uncertainty in PLS-SEM-based mediation analyses," Journal of Marketing Analytics, Palgrave Macmillan, vol. 12(1), pages 87-96, March.
    14. Prasad A. Naik & Ashutosh Prasad & Suresh P. Sethi, 2008. "Building Brand Awareness in Dynamic Oligopoly Markets," Management Science, INFORMS, vol. 54(1), pages 129-138, January.
    15. Xu, Jianjun & Tan, Xianming & Zhang, Runchu, 2010. "A note on Phillips (1991): "A constrained maximum likelihood approach to estimating switching regressions"," Journal of Econometrics, Elsevier, vol. 154(1), pages 35-41, January.
    16. Dannemann, Jörn & Holzmann, Hajo, 2010. "Testing for two components in a switching regression model," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1592-1604, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0122731. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.