IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0122385.html
   My bibliography  Save this article

A Stock Market Forecasting Model Combining Two-Directional Two-Dimensional Principal Component Analysis and Radial Basis Function Neural Network

Author

Listed:
  • Zhiqiang Guo
  • Huaiqing Wang
  • Jie Yang
  • David J Miller

Abstract

In this paper, we propose and implement a hybrid model combining two-directional two-dimensional principal component analysis ((2D)2PCA) and a Radial Basis Function Neural Network (RBFNN) to forecast stock market behavior. First, 36 stock market technical variables are selected as the input features, and a sliding window is used to obtain the input data of the model. Next, (2D)2PCA is utilized to reduce the dimension of the data and extract its intrinsic features. Finally, an RBFNN accepts the data processed by (2D)2PCA to forecast the next day's stock price or movement. The proposed model is used on the Shanghai stock market index, and the experiments show that the model achieves a good level of fitness. The proposed model is then compared with one that uses the traditional dimension reduction method principal component analysis (PCA) and independent component analysis (ICA). The empirical results show that the proposed model outperforms the PCA-based model, as well as alternative models based on ICA and on the multilayer perceptron.

Suggested Citation

  • Zhiqiang Guo & Huaiqing Wang & Jie Yang & David J Miller, 2015. "A Stock Market Forecasting Model Combining Two-Directional Two-Dimensional Principal Component Analysis and Radial Basis Function Neural Network," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-19, April.
  • Handle: RePEc:plo:pone00:0122385
    DOI: 10.1371/journal.pone.0122385
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0122385
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0122385&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0122385?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    2. Zhiqiang Guo & Huaiqing Wang & Quan Liu & Jie Yang, 2014. "A Feature Fusion Based Forecasting Model for Financial Time Series," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-13, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luca Di Persio & Matteo Garbelli & Kai Wallbaum, 2021. "Forward-Looking Volatility Estimation for Risk-Managed Investment Strategies during the COVID-19 Crisis," Risks, MDPI, vol. 9(2), pages 1-16, February.
    2. Kavitha Ganesan & Udhayakumar Annamalai & Nagarajan Deivanayagampillai, 2019. "An integrated new threshold FCMs Markov chain based forecasting model for analyzing the power of stock trading trend," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 5(1), pages 1-19, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Taewook Kim & Ha Young Kim, 2019. "Forecasting stock prices with a feature fusion LSTM-CNN model using different representations of the same data," PLOS ONE, Public Library of Science, vol. 14(2), pages 1-23, February.
    2. David M. Ritzwoller & Joseph P. Romano, 2019. "Uncertainty in the Hot Hand Fallacy: Detecting Streaky Alternatives to Random Bernoulli Sequences," Papers 1908.01406, arXiv.org, revised Apr 2021.
    3. Shazia Ghani, 2011. "A re-visit to Minsky after 2007 financial meltdown," Post-Print halshs-01027435, HAL.
    4. Steininger, Lea & Hesse, Casimir, 2024. "Buying into new ideas: The ECB’s evolving justification of unlimited liquidity," Department of Economics Working Paper Series 357, WU Vienna University of Economics and Business.
    5. Christiane Goodfellow & Dirk Schiereck & Steffen Wippler, 2013. "Are behavioural finance equity funds a superior investment? A note on fund performance and market efficiency," Journal of Asset Management, Palgrave Macmillan, vol. 14(2), pages 111-119, April.
    6. Cagli, Efe Caglar & Taskin, Dilvin & Evrim Mandaci, Pınar, 2019. "The short- and long-run efficiency of energy, precious metals, and base metals markets: Evidence from the exponential smooth transition autoregressive models," Energy Economics, Elsevier, vol. 84(C).
    7. Andrew Weinbach & Rodney J. Paul, 2009. "National television coverage and the behavioural bias of bettors: the American college football totals market," International Gambling Studies, Taylor & Francis Journals, vol. 9(1), pages 55-66, April.
    8. Plantinga, Andrew J. & Provencher, Bill, 2001. "Internal Consistency In Models Of Optimal Resource Use Under Uncertainty," 2001 Annual meeting, August 5-8, Chicago, IL 20712, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    9. Growitsch Christian & Nepal Rabindra & Stronzik Marcus, 2015. "Price Convergence and Information Efficiency in German Natural Gas Markets," German Economic Review, De Gruyter, vol. 16(1), pages 87-103, February.
    10. Oxelheim, Lars & Rafferty, Michael, 2005. "On the static efficiency of secondary bond markets," Journal of Multinational Financial Management, Elsevier, vol. 15(2), pages 117-135, April.
    11. Baoqiang Zhan & Shu Zhang & Helen S. Du & Xiaoguang Yang, 2022. "Exploring Statistical Arbitrage Opportunities Using Machine Learning Strategy," Computational Economics, Springer;Society for Computational Economics, vol. 60(3), pages 861-882, October.
    12. Shi, Huai-Long & Zhou, Wei-Xing, 2022. "Factor volatility spillover and its implications on factor premia," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 80(C).
    13. Gaio, Luiz Eduardo & Stefanelli, Nelson Oliveira & Pimenta, Tabajara & Bonacim, Carlos Alberto Grespan & Gatsios, Rafael Confetti, 2022. "The impact of the Russia-Ukraine conflict on market efficiency: Evidence for the developed stock market," Finance Research Letters, Elsevier, vol. 50(C).
    14. Anastasios Evgenidis & Stephanos Papadamou, 2021. "The impact of unconventional monetary policy in the euro area. Structural and scenario analysis from a Bayesian VAR," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(4), pages 5684-5703, October.
    15. Nuruddeen Usman & Kodili Nwanneka & Nduka, 2023. "Announcement Effect of COVID-19 on Cryptocurrencies," Asian Economics Letters, Asia-Pacific Applied Economics Association, vol. 3(3), pages 1-4.
    16. Olayemi O Adu & Blessing O Idakwoji, 2024. "Commodity Market Efficiency - New Evidence From the Russia-Ukraine War," Energy RESEARCH LETTERS, Asia-Pacific Applied Economics Association, vol. 5(2), pages 1-6.
    17. Tihana Škrinjarić, 2019. "Time Varying Spillovers between the Online Search Volume and Stock Returns: Case of CESEE Markets," IJFS, MDPI, vol. 7(4), pages 1-30, October.
    18. Carol Alexander & Anca Dimitriu, 2003. "Equity Indexing: Conitegration and Stock Price Dispersion: A Regime Switiching Approach to market Efficiency," ICMA Centre Discussion Papers in Finance icma-dp2003-02, Henley Business School, University of Reading.
    19. Robert C. Merton, 2006. "Paul Samuelson and Financial Economics," The American Economist, Sage Publications, vol. 50(2), pages 9-31, October.
    20. Butt, Prof. Khursheed A & Pandow, Bilal Ahmad, 2013. "An analysis into the Stock Selectivity skill of Indian Fund Managers," MPRA Paper 83500, University Library of Munich, Germany, revised 2013.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0122385. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.