IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0118088.html
   My bibliography  Save this article

Local Difference Measures between Complex Networks for Dynamical System Model Evaluation

Author

Listed:
  • Stefan Lange
  • Jonathan F Donges
  • Jan Volkholz
  • Jürgen Kurths

Abstract

A faithful modeling of real-world dynamical systems necessitates model evaluation. A recent promising methodological approach to this problem has been based on complex networks, which in turn have proven useful for the characterization of dynamical systems. In this context, we introduce three local network difference measures and demonstrate their capabilities in the field of climate modeling, where these measures facilitate a spatially explicit model evaluation. Building on a recent study by Feldhoff et al. [1] we comparatively analyze statistical and dynamical regional climate simulations of the South American monsoon system. Three types of climate networks representing different aspects of rainfall dynamics are constructed from the modeled precipitation space-time series. Specifically, we define simple graphs based on positive as well as negative rank correlations between rainfall anomaly time series at different locations, and such based on spatial synchronizations of extreme rain events. An evaluation against respective networks built from daily satellite data provided by the Tropical Rainfall Measuring Mission 3B42 V7 reveals far greater differences in model performance between network types for a fixed but arbitrary climate model than between climate models for a fixed but arbitrary network type. We identify two sources of uncertainty in this respect. Firstly, climate variability limits fidelity, particularly in the case of the extreme event network; and secondly, larger geographical link lengths render link misplacements more likely, most notably in the case of the anticorrelation network; both contributions are quantified using suitable ensembles of surrogate networks. Our model evaluation approach is applicable to any multidimensional dynamical system and especially our simple graph difference measures are highly versatile as the graphs to be compared may be constructed in whatever way required. Generalizations to directed as well as edge- and node-weighted graphs are discussed.

Suggested Citation

  • Stefan Lange & Jonathan F Donges & Jan Volkholz & Jürgen Kurths, 2015. "Local Difference Measures between Complex Networks for Dynamical System Model Evaluation," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-28, April.
  • Handle: RePEc:plo:pone00:0118088
    DOI: 10.1371/journal.pone.0118088
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0118088
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0118088&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0118088?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tsonis, A.A. & Roebber, P.J., 2004. "The architecture of the climate network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 333(C), pages 497-504.
    2. Thomas Lux & Michele Marchesi, 1999. "Scaling and criticality in a stochastic multi-agent model of a financial market," Nature, Nature, vol. 397(6719), pages 498-500, February.
    3. Mark Bagnoli & Ted Bergstrom, 2006. "Log-concave probability and its applications," Studies in Economic Theory, in: Charalambos D. Aliprantis & Rosa L. Matzkin & Daniel L. McFadden & James C. Moore & Nicholas C. Yann (ed.), Rationality and Equilibrium, pages 217-241, Springer.
    4. BLONDEL, Vincent D. & GAJARDO, Anahi & HYEMANS, Maureen & SENELLART, Pierre, 2004. "A measure of similarity between graph vertices: Applications to synonym extraction and web searching," LIDAM Reprints CORE 1798, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juan Pablo Atal & José Ignacio Cuesta & Felipe González & Cristóbal Otero, 2024. "The Economics of the Public Option: Evidence from Local Pharmaceutical Markets," American Economic Review, American Economic Association, vol. 114(3), pages 615-644, March.
    2. Péter Eso & Balázs Szentes, 2004. "The Price of Advice," Discussion Papers 1416, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    3. Arve, Malin & Zwart, Gijsbert, 2023. "Optimal procurement and investment in new technologies under uncertainty," Journal of Economic Dynamics and Control, Elsevier, vol. 147(C).
    4. Alexandre de Corniere, 2013. "Search Advertising," Economics Series Working Papers 649, University of Oxford, Department of Economics.
    5. Andrew Rhodes & Jidong Zhou, 2019. "Consumer Search and Retail Market Structure," Management Science, INFORMS, vol. 67(6), pages 2607-2623, June.
    6. Aoki, Masanao, 2002. "Open models of share markets with two dominant types of participants," Journal of Economic Behavior & Organization, Elsevier, vol. 49(2), pages 199-216, October.
    7. Siddiqi, Hammad, 2007. "Rational Interacting Agents and Volatility Clustering: A New Approach," MPRA Paper 2984, University Library of Munich, Germany.
    8. Kaijian He & Rui Zha & Jun Wu & Kin Keung Lai, 2016. "Multivariate EMD-Based Modeling and Forecasting of Crude Oil Price," Sustainability, MDPI, vol. 8(4), pages 1-11, April.
    9. Hommes, Cars & Huang, Hai & Wang, Duo, 2005. "A robust rational route to randomness in a simple asset pricing model," Journal of Economic Dynamics and Control, Elsevier, vol. 29(6), pages 1043-1072, June.
    10. Youwei Li & Xue-Zhong He, 2005. "Long Memory, Heterogeneity, and Trend Chasing," Computing in Economics and Finance 2005 113, Society for Computational Economics.
    11. Brock, William A. & Hommes, Cars H. & Wagener, Florian O. O., 2005. "Evolutionary dynamics in markets with many trader types," Journal of Mathematical Economics, Elsevier, vol. 41(1-2), pages 7-42, February.
    12. Chakravarty, Surajeet & Kaplan, Todd R. & Myles, Gareth, 2018. "When costly voting is beneficial," Journal of Public Economics, Elsevier, vol. 167(C), pages 33-42.
    13. Klein, A. & Urbig, D. & Kirn, S., 2008. "Who Drives the Market? Estimating a Heterogeneous Agent-based Financial Market Model Using a Neural Network Approach," MPRA Paper 14433, University Library of Munich, Germany.
    14. Schweizer, Nikolaus & Szech, Nora, 2015. "A quantitative version of Myerson regularity," Working Paper Series in Economics 76, Karlsruhe Institute of Technology (KIT), Department of Economics and Management.
    15. Paulo Ferreira & Éder J.A.L. Pereira & Hernane B.B. Pereira, 2020. "From Big Data to Econophysics and Its Use to Explain Complex Phenomena," JRFM, MDPI, vol. 13(7), pages 1-10, July.
    16. E. Samanidou & E. Zschischang & D. Stauffer & T. Lux, 2001. "Microscopic Models of Financial Markets," Papers cond-mat/0110354, arXiv.org.
    17. Péter Eső & Balázs Szentes, 2007. "The price of advice," RAND Journal of Economics, RAND Corporation, vol. 38(4), pages 863-880, December.
    18. Rhodes, Andrew, 2011. "Multiproduct pricing and the Diamond Paradox," MPRA Paper 32511, University Library of Munich, Germany.
    19. Jørgen Vitting Andersen & Ioannis Vrontos & Petros Dellaportas & Serge Galam, 2014. "Communication impacting financial markets," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00982959, HAL.
    20. Gaunersdorfer, A. & Hommes, C.H. & Wagener, F.O.O., 2000. "Bifurcation Routes to Volatility Clustering," CeNDEF Working Papers 00-04, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0118088. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.