IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0117296.html
   My bibliography  Save this article

Time Series Analyses of Hand, Foot and Mouth Disease Integrating Weather Variables

Author

Listed:
  • Yuanbin Song
  • Fan Wang
  • Bin Wang
  • Shaohua Tao
  • Huiping Zhang
  • Sai Liu
  • Oscar Ramirez
  • Qiyi Zeng

Abstract

Background: The past decade witnessed an increment in the incidence of hand foot mouth disease (HFMD) in the Pacific Asian region; specifically, in Guangzhou China. This emphasized the requirement of an early warning system designed to allow the medical community to better prepare for outbreaks and thus minimize the number of fatalities. Methods: Samples from 1,556 inpatients (hospitalized) and 11,004 outpatients (non-admitted) diagnosed with HFMD were collected in this study from January 2009 to October 2013. Seasonal Autoregressive Integrated Moving Average (SARIMA) model was applied to establish high predictive model for inpatients and outpatient as well as three viral serotypes (EV71, Pan-EV and CA16). To integrate climate variables in the data analyses, data from eight climate variables were simultaneously obtained during this period. Significant climate variable identified by correlation analyses was executed to improve time series modeling as external repressors. Results: Among inpatients with HFMD, 248 (15.9%) were affected by EV71, 137 (8.8%) were affected by Pan-EV+, and 436 (28.0%) were affected by CA16. Optimal Univariate SARIMA model was identified: (2,0,3)(1,0,0)52 for inpatients, (0,1,0)(0,0,2)52 for outpatients as well as three serotypes (EV71, (1,0,1)(0,0,1)52; CA16, (1,0,1)(0,0,0)52; Pan-EV, (1,0,1)(0,0,0)52). Using climate as our independent variable, precipitation (PP) was first identified to be associated with inpatients (r = 0.211, P = 0.001), CA16-serotype (r = 0.171, P = 0.007) and outpatients (r = 0.214, P = 0.01) in partial correlation analyses, and was then shown a significant lag in cross-autocorrelation analyses. However, inclusion of PP [lag -3 week] as external repressor showed a moderate impact on the predictive performance of the SARIMA model described here-in. Conclusion: Climate patterns and HFMD incidences have been shown to be strongly correlated. The SARIMA model developed here can be a helpful tool in developing an early warning system for HFMD.

Suggested Citation

  • Yuanbin Song & Fan Wang & Bin Wang & Shaohua Tao & Huiping Zhang & Sai Liu & Oscar Ramirez & Qiyi Zeng, 2015. "Time Series Analyses of Hand, Foot and Mouth Disease Integrating Weather Variables," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-18, March.
  • Handle: RePEc:plo:pone00:0117296
    DOI: 10.1371/journal.pone.0117296
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0117296
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0117296&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0117296?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sangwon Chae & Sungjun Kwon & Donghyun Lee, 2018. "Predicting Infectious Disease Using Deep Learning and Big Data," IJERPH, MDPI, vol. 15(8), pages 1-20, July.
    2. Victor Olsavszky & Mihnea Dosius & Cristian Vladescu & Johannes Benecke, 2020. "Time Series Analysis and Forecasting with Automated Machine Learning on a National ICD-10 Database," IJERPH, MDPI, vol. 17(14), pages 1-17, July.
    3. Li Qi & Wenge Tang & Han Zhao & Hua Ling & Kun Su & Hua Zhao & Qin Li & Tao Shen, 2018. "Epidemiological Characteristics and Spatial-Temporal Distribution of Hand, Foot, and Mouth Disease in Chongqing, China, 2009–2016," IJERPH, MDPI, vol. 15(2), pages 1-12, February.
    4. Chengdong Xu, 2017. "Spatio-Temporal Pattern and Risk Factor Analysis of Hand, Foot and Mouth Disease Associated with Under-Five Morbidity in the Beijing–Tianjin–Hebei Region of China," IJERPH, MDPI, vol. 14(4), pages 1-13, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0117296. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.