IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0116916.html
   My bibliography  Save this article

Crossing Latitudes—Long-Distance Tracking of an Apex Predator

Author

Listed:
  • Luciana C Ferreira
  • Michele Thums
  • Jessica J Meeuwig
  • Gabriel M S Vianna
  • John Stevens
  • Rory McAuley
  • Mark G Meekan

Abstract

Tiger sharks (Galeocerdo cuvier) are apex predators occurring in most tropical and warm temperate marine ecosystems, but we know relatively little of their patterns of residency and movement over large spatial and temporal scales. We deployed satellite tags on eleven tiger sharks off the north-western coast of Western Australia and used the Brownian Bridge kernel method to calculate home ranges and analyse movement behaviour. One individual recorded one of the largest geographical ranges of movement ever reported for the species, travelling over 4000 km during 517 days of monitoring. Tags on the remainder of the sharks reported for shorter periods (7-191 days). Most of these sharks had restricted movements and long-term (30-188 days) residency in coastal waters in the vicinity of the area where they were tagged. Core home range areas of sharks varied greatly from 1166.9 to 634,944 km2. Tiger sharks spent most of their time in water temperatures between 23°-26°C but experienced temperatures ranging from 6°C to 33°C. One shark displayed seasonal movements among three distinct home range cores spread along most of the coast of Western Australia and generalized linear models showed that this individual had different patterns of temperature and depth occupancy in each region of the coast, with the highest probability of residency occurring in the shallowest areas of the coast with water temperatures above 23°C. These results suggest that tiger sharks can migrate over very large distances and across latitudes ranging from tropical to the cool temperate waters. Such extensive long-term movements may be a key element influencing the connectivity of populations within and among ocean basins.

Suggested Citation

  • Luciana C Ferreira & Michele Thums & Jessica J Meeuwig & Gabriel M S Vianna & John Stevens & Rory McAuley & Mark G Meekan, 2015. "Crossing Latitudes—Long-Distance Tracking of an Apex Predator," PLOS ONE, Public Library of Science, vol. 10(2), pages 1-17, February.
  • Handle: RePEc:plo:pone00:0116916
    DOI: 10.1371/journal.pone.0116916
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0116916
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0116916&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0116916?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. B. A. Block & I. D. Jonsen & S. J. Jorgensen & A. J. Winship & S. A. Shaffer & S. J. Bograd & E. L. Hazen & D. G. Foley & G. A. Breed & A.-L. Harrison & J. E. Ganong & A. Swithenbank & M. Castleton & , 2011. "Tracking apex marine predator movements in a dynamic ocean," Nature, Nature, vol. 475(7354), pages 86-90, July.
    2. Dimitris Politis & Halbert White, 2004. "Automatic Block-Length Selection for the Dependent Bootstrap," Econometric Reviews, Taylor & Francis Journals, vol. 23(1), pages 53-70.
    3. Andre M. Boustany & Scott F. Davis & Peter Pyle & Scot D. Anderson & Burney J. Le Boeuf & Barbara A. Block, 2002. "Expanded niche for white sharks," Nature, Nature, vol. 415(6867), pages 35-36, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alison V Towner & Les G Underhill & Oliver J D Jewell & Malcolm J Smale, 2013. "Environmental Influences on the Abundance and Sexual Composition of White Sharks Carcharodon carcharias in Gansbaai, South Africa," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-11, August.
    2. Paulo M. D. C. Parente & Richard J. Smith, 2021. "Quasi‐maximum likelihood and the kernel block bootstrap for nonlinear dynamic models," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(4), pages 377-405, July.
    3. Jiang, Yonghong & Nie, He & Ruan, Weihua, 2018. "Time-varying long-term memory in Bitcoin market," Finance Research Letters, Elsevier, vol. 25(C), pages 280-284.
    4. Chendi Ni & Yuying Li & Peter A. Forsyth, 2023. "Neural Network Approach to Portfolio Optimization with Leverage Constraints:a Case Study on High Inflation Investment," Papers 2304.05297, arXiv.org, revised May 2023.
    5. Shin, Dong Wan & Hwang, Eunju, 2013. "Stationary bootstrapping for cointegrating regressions," Statistics & Probability Letters, Elsevier, vol. 83(2), pages 474-480.
    6. Palm, Franz C. & Smeekes, Stephan & Urbain, Jean-Pierre, 2011. "Cross-sectional dependence robust block bootstrap panel unit root tests," Journal of Econometrics, Elsevier, vol. 163(1), pages 85-104, July.
    7. Shankhajyoti De & Arabin Kumar Dey & Deepak Kumar Gouda, 2022. "Construction of Confidence Interval for a Univariate Stock Price Signal Predicted Through Long Short Term Memory Network," Annals of Data Science, Springer, vol. 9(2), pages 271-284, April.
    8. Liu, Lily Y. & Patton, Andrew J. & Sheppard, Kevin, 2015. "Does anything beat 5-minute RV? A comparison of realized measures across multiple asset classes," Journal of Econometrics, Elsevier, vol. 187(1), pages 293-311.
    9. Geert Bekaert & Eric C. Engstrom & Nancy R. Xu, 2022. "The Time Variation in Risk Appetite and Uncertainty," Management Science, INFORMS, vol. 68(6), pages 3975-4004, June.
    10. Tiwari, Aviral Kumar & Aye, Goodness C. & Gupta, Rangan & Gkillas, Konstantinos, 2020. "Gold-oil dependence dynamics and the role of geopolitical risks: Evidence from a Markov-switching time-varying copula model," Energy Economics, Elsevier, vol. 88(C).
    11. E. Ramos-P'erez & P. J. Alonso-Gonz'alez & J. J. N'u~nez-Vel'azquez, 2020. "Forecasting volatility with a stacked model based on a hybridized Artificial Neural Network," Papers 2006.16383, arXiv.org, revised Aug 2020.
    12. Kumar, Satish & Khalfaoui, Rabeh & Tiwari, Aviral Kumar, 2021. "Does geopolitical risk improve the directional predictability from oil to stock returns? Evidence from oil-exporting and oil-importing countries," Resources Policy, Elsevier, vol. 74(C).
    13. Crow White & Christopher Costello, 2014. "Close the High Seas to Fishing?," PLOS Biology, Public Library of Science, vol. 12(3), pages 1-5, March.
    14. Warshaw, Evan, 2019. "Extreme dependence and risk spillovers across north american equity markets," The North American Journal of Economics and Finance, Elsevier, vol. 47(C), pages 237-251.
    15. Chen, Yichao & Pun, Chi Seng, 2019. "A bootstrap-based KPSS test for functional time series," Journal of Multivariate Analysis, Elsevier, vol. 174(C).
    16. Fricke, Christoph & Menkhoff, Lukas, 2014. "Financial conditions, macroeconomic factors and (un)expected bond excess returns," Discussion Papers 35/2014, Deutsche Bundesbank.
    17. Choi, Ji-Eun & Shin, Dong Wan, 2019. "Moving block bootstrapping for a CUSUM test for correlation change," Computational Statistics & Data Analysis, Elsevier, vol. 135(C), pages 95-106.
    18. Sensoy, Ahmet & Hacihasanoglu, Erk, 2014. "Time-varying long range dependence in energy futures markets," Energy Economics, Elsevier, vol. 46(C), pages 318-327.
    19. Hubert Dichtl & Wolfgang Drobetz & Martin Wambach, 2014. "Where is the value added of rebalancing? A systematic comparison of alternative rebalancing strategies," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 28(3), pages 209-231, August.
    20. Hampl, Filip & Vágnerová Linnertová, Dagmar & Horváth, Matúš, 2024. "Crypto havens during war times? Evidence from the Russian invasion of Ukraine," The North American Journal of Economics and Finance, Elsevier, vol. 71(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0116916. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.