IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0111318.html
   My bibliography  Save this article

A Composite Model for Subgroup Identification and Prediction via Bicluster Analysis

Author

Listed:
  • Hung-Chia Chen
  • Wen Zou
  • Tzu-Pin Lu
  • James J Chen

Abstract

Background: A major challenges in the analysis of large and complex biomedical data is to develop an approach for 1) identifying distinct subgroups in the sampled populations, 2) characterizing their relationships among subgroups, and 3) developing a prediction model to classify subgroup memberships of new samples by finding a set of predictors. Each subgroup can represent different pathogen serotypes of microorganisms, different tumor subtypes in cancer patients, or different genetic makeups of patients related to treatment response. Methods: This paper proposes a composite model for subgroup identification and prediction using biclusters. A biclustering technique is first used to identify a set of biclusters from the sampled data. For each bicluster, a subgroup-specific binary classifier is built to determine if a particular sample is either inside or outside the bicluster. A composite model, which consists of all binary classifiers, is constructed to classify samples into several disjoint subgroups. The proposed composite model neither depends on any specific biclustering algorithm or patterns of biclusters, nor on any classification algorithms. Results: The composite model was shown to have an overall accuracy of 97.4% for a synthetic dataset consisting of four subgroups. The model was applied to two datasets where the sample’s subgroup memberships were known. The procedure showed 83.7% accuracy in discriminating lung cancer adenocarcinoma and squamous carcinoma subtypes, and was able to identify 5 serotypes and several subtypes with about 94% accuracy in a pathogen dataset. Conclusion: The composite model presents a novel approach to developing a biclustering-based classification model from unlabeled sampled data. The proposed approach combines unsupervised biclustering and supervised classification techniques to classify samples into disjoint subgroups based on their associated attributes, such as genotypic factors, phenotypic outcomes, efficacy/safety measures, or responses to treatments. The procedure is useful for identification of unknown species or new biomarkers for targeted therapy.

Suggested Citation

  • Hung-Chia Chen & Wen Zou & Tzu-Pin Lu & James J Chen, 2014. "A Composite Model for Subgroup Identification and Prediction via Bicluster Analysis," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-14, October.
  • Handle: RePEc:plo:pone00:0111318
    DOI: 10.1371/journal.pone.0111318
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0111318
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0111318&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0111318?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wen Zou & Hung-Chia Chen & Kelley B Hise & Hailin Tang & Steven L Foley & Joe Meehan & Wei-Jiun Lin & Rajesh Nayak & Joshua Xu & Hong Fang & James J Chen, 2013. "Meta-Analysis of Pulsed-Field Gel Electrophoresis Fingerprints Based on a Constructed Salmonella Database," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-9, March.
    2. Hung-Chia Chen & Wen Zou & Yin-Jing Tien & James J Chen, 2013. "Identification of Bicluster Regions in a Binary Matrix and Its Applications," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-13, August.
    3. Dudoit S. & Fridlyand J. & Speed T. P, 2002. "Comparison of Discrimination Methods for the Classification of Tumors Using Gene Expression Data," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 77-87, March.
    4. Andrea H. Bild & Guang Yao & Jeffrey T. Chang & Quanli Wang & Anil Potti & Dawn Chasse & Mary-Beth Joshi & David Harpole & Johnathan M. Lancaster & Andrew Berchuck & John A. Olson & Jeffrey R. Marks &, 2006. "Oncogenic pathway signatures in human cancers as a guide to targeted therapies," Nature, Nature, vol. 439(7074), pages 353-357, January.
    5. Mihee Lee & Haipeng Shen & Jianhua Z. Huang & J. S. Marron, 2010. "Biclustering via Sparse Singular Value Decomposition," Biometrics, The International Biometric Society, vol. 66(4), pages 1087-1095, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kubokawa, Tatsuya & Srivastava, Muni S., 2008. "Estimation of the precision matrix of a singular Wishart distribution and its application in high-dimensional data," Journal of Multivariate Analysis, Elsevier, vol. 99(9), pages 1906-1928, October.
    2. Junjie Su & Byung-Jun Yoon & Edward R Dougherty, 2009. "Accurate and Reliable Cancer Classification Based on Probabilistic Inference of Pathway Activity," PLOS ONE, Public Library of Science, vol. 4(12), pages 1-10, December.
    3. Hossain, Ahmed & Beyene, Joseph & Willan, Andrew R. & Hu, Pingzhao, 2009. "A flexible approximate likelihood ratio test for detecting differential expression in microarray data," Computational Statistics & Data Analysis, Elsevier, vol. 53(10), pages 3685-3695, August.
    4. Carey K Anders & Chaitanya R Acharya & David S Hsu & Gloria Broadwater & Katherine Garman & John A Foekens & Yi Zhang & Yixin Wang & Kelly Marcom & Jeffrey R Marks & Sayan Mukherjee & Joseph R Nevins , 2008. "Age-Specific Differences in Oncogenic Pathway Deregulation Seen in Human Breast Tumors," PLOS ONE, Public Library of Science, vol. 3(1), pages 1-8, January.
    5. Luca Scrucca, 2014. "Graphical tools for model-based mixture discriminant analysis," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(2), pages 147-165, June.
    6. Bilin Zeng & Xuerong Meggie Wen & Lixing Zhu, 2017. "A link-free sparse group variable selection method for single-index model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(13), pages 2388-2400, October.
    7. J. Burez & D. Van Den Poel, 2005. "CRM at a Pay-TV Company: Using Analytical Models to Reduce Customer Attrition by Targeted Marketing for Subscription Services," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 05/348, Ghent University, Faculty of Economics and Business Administration.
    8. Won, Joong-Ho & Lim, Johan & Yu, Donghyeon & Kim, Byung Soo & Kim, Kyunga, 2014. "Monotone false discovery rate," Statistics & Probability Letters, Elsevier, vol. 87(C), pages 86-93.
    9. Jan, Budczies & Kosztyla, Daniel & von Törne, Christian & Stenzinger, Albrecht & Darb-Esfahani, Silvia & Dietel, Manfred & Denkert, Carsten, 2014. "cancerclass: An R Package for Development and Validation of Diagnostic Tests from High-Dimensional Molecular Data," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 59(i01).
    10. Verena Jabs & Karolina Edlund & Helena König & Marianna Grinberg & Katrin Madjar & Jörg Rahnenführer & Simon Ekman & Michael Bergkvist & Lars Holmberg & Katja Ickstadt & Johan Botling & Jan G Hengstle, 2017. "Integrative analysis of genome-wide gene copy number changes and gene expression in non-small cell lung cancer," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-23, November.
    11. Jianqing Fan & Yang Feng & Jiancheng Jiang & Xin Tong, 2016. "Feature Augmentation via Nonparametrics and Selection (FANS) in High-Dimensional Classification," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 275-287, March.
    12. Eun Sung Park & Ju-Seog Lee & Hyun Goo Woo & Fenghuang Zhan & Joanna H Shih & John D Shaughnessy Jr. & J Frederic Mushinski, 2007. "Heterologous Tissue Culture Expression Signature Predicts Human Breast Cancer Prognosis," PLOS ONE, Public Library of Science, vol. 2(1), pages 1-16, January.
    13. Márton Gosztonyi & Csákné Filep Judit, 2022. "Profiling (Non-)Nascent Entrepreneurs in Hungary Based on Machine Learning Approaches," Sustainability, MDPI, vol. 14(6), pages 1-20, March.
    14. Wang, Tao & Xu, Pei-Rong & Zhu, Li-Xing, 2012. "Non-convex penalized estimation in high-dimensional models with single-index structure," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 221-235.
    15. Getachew Mengistu & Getiye Dejenu & Cheru Tesema & Balew Arega & Tadesse Awoke & Kassahun Alemu & Feleke Moges, 2020. "Epidemiology of streptomycin resistant Salmonella from humans and animals in Ethiopia: A systematic review and meta-analysis," PLOS ONE, Public Library of Science, vol. 15(12), pages 1-19, December.
    16. Un Jung Lee & ShengLi Tzeng & Yu-Chuan Chen & James J Chen, 2017. "Development of Predictive Signatures for Treatment Selection in Precision Medicine," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 2(4), pages 83-88, August.
    17. Alan R Dabney & John D Storey, 2007. "Optimality Driven Nearest Centroid Classification from Genomic Data," PLOS ONE, Public Library of Science, vol. 2(10), pages 1-7, October.
    18. Zhao, Jianhua & Yu, Philip L.H. & Shi, Lei & Li, Shulan, 2012. "Separable linear discriminant analysis," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4290-4300.
    19. Chakraborty, Sounak, 2009. "Simultaneous cancer classification and gene selection with Bayesian nearest neighbor method: An integrated approach," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1462-1474, February.
    20. Shaheena Bashir & Edward Carter, 2010. "Penalized multinomial mixture logit model," Computational Statistics, Springer, vol. 25(1), pages 121-141, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0111318. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.