IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0109539.html
   My bibliography  Save this article

Niche-Partitioning of Edaphic Microbial Communities in the Namib Desert Gravel Plain Fairy Circles

Author

Listed:
  • Jean-Baptiste Ramond
  • Annelize Pienaar
  • Alacia Armstrong
  • Mary Seely
  • Don A Cowan

Abstract

Endemic to the Namib Desert, Fairy Circles (FCs) are vegetation-free circular patterns surrounded and delineated by grass species. Since first reported the 1970's, many theories have been proposed to explain their appearance, but none provide a fully satisfactory explanation of their origin(s) and/or causative agent(s). In this study, we have evaluated an early hypothesis stating that edaphic microorganisms could be involved in their formation and/or maintenance. Surface soils (0–5cm) from three different zones (FC center, FC margin and external, grass-covered soils) of five independent FCs were collected in April 2013 in the Namib Desert gravel plains. T-RFLP fingerprinting of the bacterial (16S rRNA gene) and fungal (ITS region) communities, in parallel with two-way crossed ANOSIM, showed that FC communities were significantly different to those of external control vegetated soil and that each FC was also characterized by significantly different communities. Intra-FC communities (margin and centre) presented higher variability than the controls. Together, these results provide clear evidence that edaphic microorganisms are involved in the Namib Desert FC phenomenon. However, we are, as yet, unable to confirm whether bacteria and/or fungi communities are responsible for the appearance and development of FCs or are a general consequence of the presence of the grass-free circles.

Suggested Citation

  • Jean-Baptiste Ramond & Annelize Pienaar & Alacia Armstrong & Mary Seely & Don A Cowan, 2014. "Niche-Partitioning of Edaphic Microbial Communities in the Namib Desert Gravel Plain Fairy Circles," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-9, October.
  • Handle: RePEc:plo:pone00:0109539
    DOI: 10.1371/journal.pone.0109539
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0109539
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0109539&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0109539?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Janet K. Jansson & James I. Prosser, 2013. "The life beneath our feet," Nature, Nature, vol. 494(7435), pages 40-41, February.
    2. William R. Wieder & Gordon B. Bonan & Steven D. Allison, 2013. "Global soil carbon projections are improved by modelling microbial processes," Nature Climate Change, Nature, vol. 3(10), pages 909-912, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lychuk, Taras E. & Hill, Robert L. & Izaurralde, Roberto C. & Momen, Bahram & Thomson, Allison M., 2021. "Evaluation of climate change impacts and effectiveness of adaptation options on nitrate loss, microbial respiration, and soil organic carbon in the Southeastern USA," Agricultural Systems, Elsevier, vol. 193(C).
    2. Chengjie Ren & Zhenghu Zhou & Manuel Delgado-Baquerizo & Felipe Bastida & Fazhu Zhao & Yuanhe Yang & Shuohong Zhang & Jieying Wang & Chao Zhang & Xinhui Han & Jun Wang & Gaihe Yang & Gehong Wei, 2024. "Thermal sensitivity of soil microbial carbon use efficiency across forest biomes," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    3. Matthew E. Craig & Kevin M. Geyer & Katilyn V. Beidler & Edward R. Brzostek & Serita D. Frey & A. Stuart Grandy & Chao Liang & Richard P. Phillips, 2022. "Fast-decaying plant litter enhances soil carbon in temperate forests but not through microbial physiological traits," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Wang, Zhaoqi, 2019. "Estimating of terrestrial carbon storage and its internal carbon exchange under equilibrium state," Ecological Modelling, Elsevier, vol. 401(C), pages 94-110.
    5. Alberto Canarini & Lucia Fuchslueger & Jörg Schnecker & Dennis Metze & Daniel B. Nelson & Ansgar Kahmen & Margarete Watzka & Erich M. Pötsch & Andreas Schaumberger & Michael Bahn & Andreas Richter, 2024. "Soil fungi remain active and invest in storage compounds during drought independent of future climate conditions," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Leite, Marcos V.M. & Bobuľská, Lenka & Espíndola, Suéllen P. & Campos, Maria R.C. & Azevedo, Lucas C.B. & Ferreira, Adão S., 2018. "Modeling of soil phosphatase activity in land use ecosystems and topsoil layers in the Brazilian Cerrado," Ecological Modelling, Elsevier, vol. 385(C), pages 182-188.
    7. Hata, Yoshiaki & Kumagai, Tomo'omi & Shimizu, Takanori & Miyazawa, Yoshiyuki, 2023. "Implications of seasonal changes in photosynthetic traits and leaf area index for canopy CO2 and H2O fluxes in a Japanese cedar (Cryptomeria japonica D. Don) plantation," Ecological Modelling, Elsevier, vol. 477(C).
    8. Shuqi Qin & Dianye Zhang & Bin Wei & Yuanhe Yang, 2024. "Dual roles of microbes in mediating soil carbon dynamics in response to warming," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Guillaume Patoine & Nico Eisenhauer & Simone Cesarz & Helen R. P. Phillips & Xiaofeng Xu & Lihua Zhang & Carlos A. Guerra, 2022. "Drivers and trends of global soil microbial carbon over two decades," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    10. Guangcun Hao & Qianlai Zhuang & Qing Zhu & Yujie He & Zhenong Jin & Weijun Shen, 2015. "Quantifying microbial ecophysiological effects on the carbon fluxes of forest ecosystems over the conterminous United States," Climatic Change, Springer, vol. 133(4), pages 695-708, December.
    11. Mingjie Shi & Hongqi Wu & Pingan Jiang & Wenjiao Shi & Mo Zhang & Lina Zhang & Haoyu Zhang & Xin Fan & Zhuo Liu & Kai Zheng & Tong Dong & Muhammad Fahad Baqa, 2022. "Cropland Expansion Mitigates the Supply and Demand Deficit for Carbon Sequestration Service under Different Scenarios in the Future—The Case of Xinjiang," Agriculture, MDPI, vol. 12(8), pages 1-18, August.
    12. Arwa Hisham Rahahleh & Majd Mohammad Omoush, 2020. "The Role of Business Intelligence in Crises Management: A Field Study on the Telecommunication Companies in Jordan," International Business Research, Canadian Center of Science and Education, vol. 13(1), pages 221-232, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0109539. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.