IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v385y2018icp182-188.html
   My bibliography  Save this article

Modeling of soil phosphatase activity in land use ecosystems and topsoil layers in the Brazilian Cerrado

Author

Listed:
  • Leite, Marcos V.M.
  • Bobuľská, Lenka
  • Espíndola, Suéllen P.
  • Campos, Maria R.C.
  • Azevedo, Lucas C.B.
  • Ferreira, Adão S.

Abstract

Soil phosphatase is a biochemical indicator of soil quality, and its activity plays a key role in the productivity of terrestrial ecosystems. Modeling the kinetic parameters of soil phosphatase is central to integrate ecological processes in tropical soils under different land use ecosystems. The goal of this study was to determine the kinetic parameters of soil acid phosphatase (APsoil) and assess the relationship between its kinetic parameters and soil quality indicators in two topsoil layers (at the 0–5 and 5–10 cm depths) from an Oxisol under the native Cerrado, pine, soya and sugarcane ecosystems. APsoil activity was assessed with different substrate concentrations (0, 0.75, 1.5, 3, 4.5, 6, 12 and 18 mmol L−1 of p-nitrophenol phosphate in buffer) at 37 °C, pH 6.5 and acetate buffer. The kinetic parameters (Km and Vmax) were estimated using the Michaelis-Menten (M-M) and Eadie-Hofstee (E-H) equations. Soil organic carbon (SOC), total nitrogen (TN), soil microbial respiration (SMR), microbial biomass carbon (MBC) and nitrogen (MBN), and dehydrogenase activity (DHA) were also measured. In both models, the highest Vmax and Km values were found in native Cerrado soil, followed by pine soil in two surface layers. Soya and sugarcane soils presented low Km values, showing a great substrate affinity of soil phosphatase in these ecosystems. The M-M model estimated higher Vmax and Km values than the E-H model. The M-M model did not show any difference in Km between the two layers of ecosystems, but the E-H model revealed significant differences between the layers with the lowest Km values at the 5–10 cm depth. The results revealed that Km has a significant correlation with SOC (r = 0.71), TN (r = 0.72), MBC (r = 0.75) and MBN (r = 0.75). The results also showed a greater correlation between the Km of the E-H model and soil quality indicators than the M-M model. Our study shows the importance of modeling the APsoil in the Brazilian Cerrado in relation to land use ecosystems, depths and the model applied.

Suggested Citation

  • Leite, Marcos V.M. & Bobuľská, Lenka & Espíndola, Suéllen P. & Campos, Maria R.C. & Azevedo, Lucas C.B. & Ferreira, Adão S., 2018. "Modeling of soil phosphatase activity in land use ecosystems and topsoil layers in the Brazilian Cerrado," Ecological Modelling, Elsevier, vol. 385(C), pages 182-188.
  • Handle: RePEc:eee:ecomod:v:385:y:2018:i:c:p:182-188
    DOI: 10.1016/j.ecolmodel.2018.07.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380018302631
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2018.07.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. William R. Wieder & Gordon B. Bonan & Steven D. Allison, 2013. "Global soil carbon projections are improved by modelling microbial processes," Nature Climate Change, Nature, vol. 3(10), pages 909-912, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Magdalena Myszura-Dymek & Grażyna Żukowska, 2023. "The Influence of Sewage Sludge Composts on the Enzymatic Activity of Reclaimed Post-Mining Soil," Sustainability, MDPI, vol. 15(6), pages 1-18, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lychuk, Taras E. & Hill, Robert L. & Izaurralde, Roberto C. & Momen, Bahram & Thomson, Allison M., 2021. "Evaluation of climate change impacts and effectiveness of adaptation options on nitrate loss, microbial respiration, and soil organic carbon in the Southeastern USA," Agricultural Systems, Elsevier, vol. 193(C).
    2. Jean-Baptiste Ramond & Annelize Pienaar & Alacia Armstrong & Mary Seely & Don A Cowan, 2014. "Niche-Partitioning of Edaphic Microbial Communities in the Namib Desert Gravel Plain Fairy Circles," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-9, October.
    3. Chengjie Ren & Zhenghu Zhou & Manuel Delgado-Baquerizo & Felipe Bastida & Fazhu Zhao & Yuanhe Yang & Shuohong Zhang & Jieying Wang & Chao Zhang & Xinhui Han & Jun Wang & Gaihe Yang & Gehong Wei, 2024. "Thermal sensitivity of soil microbial carbon use efficiency across forest biomes," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    4. Matthew E. Craig & Kevin M. Geyer & Katilyn V. Beidler & Edward R. Brzostek & Serita D. Frey & A. Stuart Grandy & Chao Liang & Richard P. Phillips, 2022. "Fast-decaying plant litter enhances soil carbon in temperate forests but not through microbial physiological traits," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Wang, Zhaoqi, 2019. "Estimating of terrestrial carbon storage and its internal carbon exchange under equilibrium state," Ecological Modelling, Elsevier, vol. 401(C), pages 94-110.
    6. Hata, Yoshiaki & Kumagai, Tomo'omi & Shimizu, Takanori & Miyazawa, Yoshiyuki, 2023. "Implications of seasonal changes in photosynthetic traits and leaf area index for canopy CO2 and H2O fluxes in a Japanese cedar (Cryptomeria japonica D. Don) plantation," Ecological Modelling, Elsevier, vol. 477(C).
    7. Shuqi Qin & Dianye Zhang & Bin Wei & Yuanhe Yang, 2024. "Dual roles of microbes in mediating soil carbon dynamics in response to warming," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Guillaume Patoine & Nico Eisenhauer & Simone Cesarz & Helen R. P. Phillips & Xiaofeng Xu & Lihua Zhang & Carlos A. Guerra, 2022. "Drivers and trends of global soil microbial carbon over two decades," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    9. Guangcun Hao & Qianlai Zhuang & Qing Zhu & Yujie He & Zhenong Jin & Weijun Shen, 2015. "Quantifying microbial ecophysiological effects on the carbon fluxes of forest ecosystems over the conterminous United States," Climatic Change, Springer, vol. 133(4), pages 695-708, December.
    10. Mingjie Shi & Hongqi Wu & Pingan Jiang & Wenjiao Shi & Mo Zhang & Lina Zhang & Haoyu Zhang & Xin Fan & Zhuo Liu & Kai Zheng & Tong Dong & Muhammad Fahad Baqa, 2022. "Cropland Expansion Mitigates the Supply and Demand Deficit for Carbon Sequestration Service under Different Scenarios in the Future—The Case of Xinjiang," Agriculture, MDPI, vol. 12(8), pages 1-18, August.
    11. Arwa Hisham Rahahleh & Majd Mohammad Omoush, 2020. "The Role of Business Intelligence in Crises Management: A Field Study on the Telecommunication Companies in Jordan," International Business Research, Canadian Center of Science and Education, vol. 13(1), pages 221-232, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:385:y:2018:i:c:p:182-188. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.