IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0107984.html
   My bibliography  Save this article

Fitting Membrane Resistance along with Action Potential Shape in Cardiac Myocytes Improves Convergence: Application of a Multi-Objective Parallel Genetic Algorithm

Author

Listed:
  • Jaspreet Kaur
  • Anders Nygren
  • Edward J Vigmond

Abstract

Fitting parameter sets of non-linear equations in cardiac single cell ionic models to reproduce experimental behavior is a time consuming process. The standard procedure is to adjust maximum channel conductances in ionic models to reproduce action potentials (APs) recorded in isolated cells. However, vastly different sets of parameters can produce similar APs. Furthermore, even with an excellent AP match in case of single cell, tissue behaviour may be very different. We hypothesize that this uncertainty can be reduced by additionally fitting membrane resistance (Rm). To investigate the importance of Rm, we developed a genetic algorithm approach which incorporated Rm data calculated at a few points in the cycle, in addition to AP morphology. Performance was compared to a genetic algorithm using only AP morphology data. The optimal parameter sets and goodness of fit as computed by the different methods were compared. First, we fit an ionic model to itself, starting from a random parameter set. Next, we fit the AP of one ionic model to that of another. Finally, we fit an ionic model to experimentally recorded rabbit action potentials. Adding the extra objective (Rm, at a few voltages) to the AP fit, lead to much better convergence. Typically, a smaller MSE (mean square error, defined as the average of the squared error between the target AP and AP that is to be fitted) was achieved in one fifth of the number of generations compared to using only AP data. Importantly, the variability in fit parameters was also greatly reduced, with many parameters showing an order of magnitude decrease in variability. Adding Rm to the objective function improves the robustness of fitting, better preserving tissue level behavior, and should be incorporated.

Suggested Citation

  • Jaspreet Kaur & Anders Nygren & Edward J Vigmond, 2014. "Fitting Membrane Resistance along with Action Potential Shape in Cardiac Myocytes Improves Convergence: Application of a Multi-Objective Parallel Genetic Algorithm," PLOS ONE, Public Library of Science, vol. 9(9), pages 1-10, September.
  • Handle: RePEc:plo:pone00:0107984
    DOI: 10.1371/journal.pone.0107984
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0107984
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0107984&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0107984?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Amrita X Sarkar & Eric A Sobie, 2010. "Regression Analysis for Constraining Free Parameters in Electrophysiological Models of Cardiac Cells," PLOS Computational Biology, Public Library of Science, vol. 6(9), pages 1-11, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Willemijn Groenendaal & Francis A Ortega & Armen R Kherlopian & Andrew C Zygmunt & Trine Krogh-Madsen & David J Christini, 2015. "Cell-Specific Cardiac Electrophysiology Models," PLOS Computational Biology, Public Library of Science, vol. 11(4), pages 1-22, April.
    2. Tanmay A Gokhale & Jong M Kim & Robert D Kirkton & Nenad Bursac & Craig S Henriquez, 2017. "Modeling an Excitable Biosynthetic Tissue with Inherent Variability for Paired Computational-Experimental Studies," PLOS Computational Biology, Public Library of Science, vol. 13(1), pages 1-26, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Timothy Rumbell & James Kozloski, 2019. "Dimensions of control for subthreshold oscillations and spontaneous firing in dopamine neurons," PLOS Computational Biology, Public Library of Science, vol. 15(9), pages 1-34, September.
    2. Joshua Mayourian & Ruben M Savizky & Eric A Sobie & Kevin D Costa, 2016. "Modeling Electrophysiological Coupling and Fusion between Human Mesenchymal Stem Cells and Cardiomyocytes," PLOS Computational Biology, Public Library of Science, vol. 12(7), pages 1-29, July.
    3. Willemijn Groenendaal & Francis A Ortega & Armen R Kherlopian & Andrew C Zygmunt & Trine Krogh-Madsen & David J Christini, 2015. "Cell-Specific Cardiac Electrophysiology Models," PLOS Computational Biology, Public Library of Science, vol. 11(4), pages 1-22, April.
    4. Massimiliano Zaniboni & Francesca Cacciani & Robert L Lux, 2014. "Beat-to-Beat Cycle Length Variability of Spontaneously Beating Guinea Pig Sinoatrial Cells: Relative Contributions of the Membrane and Calcium Clocks," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-15, June.
    5. John Walmsley & Jose F Rodriguez & Gary R Mirams & Kevin Burrage & Igor R Efimov & Blanca Rodriguez, 2013. "mRNA Expression Levels in Failing Human Hearts Predict Cellular Electrophysiological Remodeling: A Population-Based Simulation Study," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-11, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0107984. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.