IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0100242.html
   My bibliography  Save this article

Beat-to-Beat Cycle Length Variability of Spontaneously Beating Guinea Pig Sinoatrial Cells: Relative Contributions of the Membrane and Calcium Clocks

Author

Listed:
  • Massimiliano Zaniboni
  • Francesca Cacciani
  • Robert L Lux

Abstract

The heartbeat arises rhythmically in the sino-atrial node (SAN) and then spreads regularly throughout the heart. The molecular mechanism underlying SAN rhythm has been attributed by recent studies to the interplay between two clocks, one involving the hyperpolarization activated cation current If (the membrane clock), and the second attributable to activation of the electrogenic NaCa exchanger by spontaneous sarcoplasmic releases of calcium (the calcium clock). Both mechanisms contain, in principle, sources of beat-to-beat cycle length variability, which can determine the intrinsic variability of SAN firing and, in turn, contribute to the heart rate variability. In this work we have recorded long sequences of action potentials from patch clamped guinea pig SAN cells (SANCs) perfused, in turn, with normal Tyrode solution, with the If inhibitor ivabradine (3 µM), then back to normal Tyrode, and again with the ryanodine channels inhibitor ryanodine (3 µM). We have found that, together with the expected increase in beating cycle length (+25%), the application of ivabradine brought about a significant and dramatic increase in beat-to-beat cycle length variability (+50%). Despite the similar effect on firing rate, ryanodine did not modify significantly beat-to-beat cycle length variability. Acetylcholine was also applied and led to a 131% increase of beating cycle length, with only a 70% increase in beat-to-beat cycle length variability. We conclude that the main source of inter-beat variability of SANCs firing rate is related to the mechanism of the calcium clock, whereas the membrane clock seems to act in stabilizing rate. Accordingly, when the membrane clock is silenced by application of ivabradine, stochastic variations of the calcium clock are free to make SANCs beating rhythm more variable.

Suggested Citation

  • Massimiliano Zaniboni & Francesca Cacciani & Robert L Lux, 2014. "Beat-to-Beat Cycle Length Variability of Spontaneously Beating Guinea Pig Sinoatrial Cells: Relative Contributions of the Membrane and Calcium Clocks," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-15, June.
  • Handle: RePEc:plo:pone00:0100242
    DOI: 10.1371/journal.pone.0100242
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0100242
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0100242&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0100242?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Amrita X Sarkar & Eric A Sobie, 2010. "Regression Analysis for Constraining Free Parameters in Electrophysiological Models of Cardiac Cells," PLOS Computational Biology, Public Library of Science, vol. 6(9), pages 1-11, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Timothy Rumbell & James Kozloski, 2019. "Dimensions of control for subthreshold oscillations and spontaneous firing in dopamine neurons," PLOS Computational Biology, Public Library of Science, vol. 15(9), pages 1-34, September.
    2. Jaspreet Kaur & Anders Nygren & Edward J Vigmond, 2014. "Fitting Membrane Resistance along with Action Potential Shape in Cardiac Myocytes Improves Convergence: Application of a Multi-Objective Parallel Genetic Algorithm," PLOS ONE, Public Library of Science, vol. 9(9), pages 1-10, September.
    3. Joshua Mayourian & Ruben M Savizky & Eric A Sobie & Kevin D Costa, 2016. "Modeling Electrophysiological Coupling and Fusion between Human Mesenchymal Stem Cells and Cardiomyocytes," PLOS Computational Biology, Public Library of Science, vol. 12(7), pages 1-29, July.
    4. Willemijn Groenendaal & Francis A Ortega & Armen R Kherlopian & Andrew C Zygmunt & Trine Krogh-Madsen & David J Christini, 2015. "Cell-Specific Cardiac Electrophysiology Models," PLOS Computational Biology, Public Library of Science, vol. 11(4), pages 1-22, April.
    5. John Walmsley & Jose F Rodriguez & Gary R Mirams & Kevin Burrage & Igor R Efimov & Blanca Rodriguez, 2013. "mRNA Expression Levels in Failing Human Hearts Predict Cellular Electrophysiological Remodeling: A Population-Based Simulation Study," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-11, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0100242. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.