IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0106794.html
   My bibliography  Save this article

A Newfound Association between MDC1 Functional Polymorphism and Lung Cancer Risk in Chinese

Author

Listed:
  • Bo Wang
  • Lisha Zhang
  • Fuman Qiu
  • Wenxiang Fang
  • Jieqiong Deng
  • Yifeng Zhou
  • Jiachun Lu
  • Lei Yang

Abstract

Mediator of DNA damage checkpoint protein 1 (MDC1) plays an early and core role in Double-Strand Break Repair (DDR) and ataxia telangiectasia-mutated (ATM) mediated response to DNA double-strand breaks (DSBs), and thus involves the pathogenesis of several DNA damage-related diseases such as cancer. We hypothesized that the single nucleotide polymorphisms (SNPs) of MDC1 which have potencies on affecting MDC1 expression or function were associated with risk of lung cancer. In a two-stage case-control study, we tested the association between 5 putatively functional SNPs of MDC1 and lung cancer risk in a southern Chinese population, and validated the promising association in an eastern Chinese population. We found the SNP rs4713354A>C that is located in the 5′-untranslated region of MDC1 was significantly associated with lung cancer risk in both populations (P = 0.024), with an odds ratio as 1.23(95% confidence interval = 1.35–1.26) for the rs4713354C (CA+CC) genotypes compared to the rs4713354AA genotype. However, no significant association was observed between other SNPs and lung cancer risk. The gene-based analysis rested with these SNPs suggested the MDC1 as a susceptible gene for lung cancer (P = 0.009). Moreover, by querying the gene expression database, we further found that the rs4713354C genotypes confer a significantly lower mRNA expression of MDC1 than the rs4713354AA genotype in 260 cases of lymphoblastoid cells (P = 0.002). Our data suggested that the SNP rs4713354A>C of MDC1 may be a functional genetic biomarker for susceptibility to lung cancer in Chinese.

Suggested Citation

  • Bo Wang & Lisha Zhang & Fuman Qiu & Wenxiang Fang & Jieqiong Deng & Yifeng Zhou & Jiachun Lu & Lei Yang, 2014. "A Newfound Association between MDC1 Functional Polymorphism and Lung Cancer Risk in Chinese," PLOS ONE, Public Library of Science, vol. 9(9), pages 1-7, September.
  • Handle: RePEc:plo:pone00:0106794
    DOI: 10.1371/journal.pone.0106794
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0106794
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0106794&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0106794?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Grant S. Stewart & Bin Wang & Colin R. Bignell & A. Malcolm R. Taylor & Stephen J. Elledge, 2003. "MDC1 is a mediator of the mammalian DNA damage checkpoint," Nature, Nature, vol. 421(6926), pages 961-966, February.
    2. Michal Goldberg & Manuel Stucki & Jacob Falck & Damien D'Amours & Dinah Rahman & Darryl Pappin & Jiri Bartek & Stephen P. Jackson, 2003. "MDC1 is required for the intra-S-phase DNA damage checkpoint," Nature, Nature, vol. 421(6926), pages 952-956, February.
    3. Zhenkun Lou & Katherine Minter-Dykhouse & Xianglin Wu & Junjie Chen, 2003. "MDC1 is coupled to activated CHK2 in mammalian DNA damage response pathways," Nature, Nature, vol. 421(6926), pages 957-961, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tianyi Fan & Huijia Kang & Di Wu & Xinyu Zhu & Lin Huang & Jiabing Wu & Yan Zhu, 2022. "Arabidopsis γ-H2A.X-INTERACTING PROTEIN participates in DNA damage response and safeguards chromatin stability," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Emilie Renaud & Filippo Rosselli, 2013. "FANC Pathway Promotes UV-Induced Stalled Replication Forks Recovery by Acting Both Upstream and Downstream Polη and Rev1," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-13, January.
    3. Maria Pilar Sanchez-Bailon & Soo-Youn Choi & Elizabeth R. Dufficy & Karan Sharma & Gavin S. McNee & Emma Gunnell & Kelly Chiang & Debashish Sahay & Sarah Maslen & Grant S. Stewart & J. Mark Skehel & I, 2021. "Arginine methylation and ubiquitylation crosstalk controls DNA end-resection and homologous recombination repair," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
    4. Jessica L. Kelliher & Melissa L. Folkerts & Kaiyuan V. Shen & Wan Song & Kyle Tengler & Clara M. Stiefel & Seong-Ok Lee & Eloise Dray & Weixing Zhao & Brian Koss & Nicholas R. Pannunzio & Justin W. Le, 2024. "Evolved histone tail regulates 53BP1 recruitment at damaged chromatin," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    5. Ya-Chu Chang & Yu-Xiang Peng & Bo-Hua Yu & Henry C. Chang & Pei-Shin Liang & Ting-Yi Huang & Chao-Jie Shih & Li-An Chu & Tzu-Kang Sang, 2021. "VCP maintains nuclear size by regulating the DNA damage-associated MDC1–p53–autophagy axis in Drosophila," Nature Communications, Nature, vol. 12(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0106794. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.