IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-35715-2.html
   My bibliography  Save this article

Arabidopsis γ-H2A.X-INTERACTING PROTEIN participates in DNA damage response and safeguards chromatin stability

Author

Listed:
  • Tianyi Fan

    (Fudan University)

  • Huijia Kang

    (Fudan University
    Fudan University)

  • Di Wu

    (Fudan University)

  • Xinyu Zhu

    (Tsinghua University)

  • Lin Huang

    (Fudan University)

  • Jiabing Wu

    (Fudan University)

  • Yan Zhu

    (Fudan University)

Abstract

Upon the occurrence of DNA double strand breaks (DSB), the proximal histone variant H2A.X is phosphorylated as γ-H2A.X, a critical signal for consequent DSB signaling and repair pathways. Although γ-H2A.X-triggered DNA damage response (DDR) has been well-characterized in yeast and animals, the corresponding pathways in plant DDR are less well understood. Here, we show that an Arabidopsis protein γ-H2A.X-INTERACTING PROTEIN (XIP) can interact with γ-H2A.X. Its C-terminal dual-BRCT-like domain contributes to its specific interaction with γ-H2A.X. XIP-deficient seedlings display smaller meristems, inhibited growth, and higher sensitivity to DSB-inducing treatment. Loss-of-function in XIP causes transcriptome changes mimicking wild-type plants subject to replicative or genotoxic stresses. After genotoxic bleomycin treatment, more proteins with upregulated phosphorylation modifications, more DNA fragments and cell death were found in xip mutants. Moreover, XIP physically interacts with RAD51, the key recombinase in homologous recombination (HR), and somatic HR frequency is significantly reduced in xip mutants. Collectively, XIP participates in plant response to DSB and contributes to chromatin stability.

Suggested Citation

  • Tianyi Fan & Huijia Kang & Di Wu & Xinyu Zhu & Lin Huang & Jiabing Wu & Yan Zhu, 2022. "Arabidopsis γ-H2A.X-INTERACTING PROTEIN participates in DNA damage response and safeguards chromatin stability," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35715-2
    DOI: 10.1038/s41467-022-35715-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-35715-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-35715-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhenkun Lou & Katherine Minter-Dykhouse & Xianglin Wu & Junjie Chen, 2003. "MDC1 is coupled to activated CHK2 in mammalian DNA damage response pathways," Nature, Nature, vol. 421(6926), pages 957-961, February.
    2. Grant S. Stewart & Bin Wang & Colin R. Bignell & A. Malcolm R. Taylor & Stephen J. Elledge, 2003. "MDC1 is a mediator of the mammalian DNA damage checkpoint," Nature, Nature, vol. 421(6926), pages 961-966, February.
    3. Kangxi Du & Qiang Luo & Liufan Yin & Jiabing Wu & Yuhao Liu & Jianhua Gan & Aiwu Dong & Wen-Hui Shen, 2020. "OsChz1 acts as a histone chaperone in modulating chromatin organization and genome function in rice," Nature Communications, Nature, vol. 11(1), pages 1-17, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emilie Renaud & Filippo Rosselli, 2013. "FANC Pathway Promotes UV-Induced Stalled Replication Forks Recovery by Acting Both Upstream and Downstream Polη and Rev1," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-13, January.
    2. Maria Pilar Sanchez-Bailon & Soo-Youn Choi & Elizabeth R. Dufficy & Karan Sharma & Gavin S. McNee & Emma Gunnell & Kelly Chiang & Debashish Sahay & Sarah Maslen & Grant S. Stewart & J. Mark Skehel & I, 2021. "Arginine methylation and ubiquitylation crosstalk controls DNA end-resection and homologous recombination repair," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
    3. Ya-Chu Chang & Yu-Xiang Peng & Bo-Hua Yu & Henry C. Chang & Pei-Shin Liang & Ting-Yi Huang & Chao-Jie Shih & Li-An Chu & Tzu-Kang Sang, 2021. "VCP maintains nuclear size by regulating the DNA damage-associated MDC1–p53–autophagy axis in Drosophila," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
    4. Jessica L. Kelliher & Melissa L. Folkerts & Kaiyuan V. Shen & Wan Song & Kyle Tengler & Clara M. Stiefel & Seong-Ok Lee & Eloise Dray & Weixing Zhao & Brian Koss & Nicholas R. Pannunzio & Justin W. Le, 2024. "Evolved histone tail regulates 53BP1 recruitment at damaged chromatin," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35715-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.