IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0104813.html
   My bibliography  Save this article

Using Random Walks to Generate Associations between Objects

Author

Listed:
  • Muhammed A Yildirim
  • Michele Coscia

Abstract

Measuring similarities between objects based on their attributes has been an important problem in many disciplines. Object-attribute associations can be depicted as links on a bipartite graph. A similarity measure can be thought as a unipartite projection of this bipartite graph. The most widely used bipartite projection techniques make assumptions that are not often fulfilled in real life systems, or have the focus on the bipartite connections more than on the unipartite connections. Here, we define a new similarity measure that utilizes a practical procedure to extract unipartite graphs without making a priori assumptions about underlying distributions. Our similarity measure captures the relatedness between two objects via the likelihood of a random walker passing through these nodes sequentially on the bipartite graph. An important aspect of the method is that it is robust to heterogeneous bipartite structures and it controls for the transitivity similarity, avoiding the creation of unrealistic homogeneous degree distributions in the resulting unipartite graphs. We test this method using real world examples and compare the obtained results with alternative similarity measures, by validating the actual and orthogonal relations between the entities.

Suggested Citation

  • Muhammed A Yildirim & Michele Coscia, 2014. "Using Random Walks to Generate Associations between Objects," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-9, August.
  • Handle: RePEc:plo:pone00:0104813
    DOI: 10.1371/journal.pone.0104813
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0104813
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0104813&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0104813?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yang-Yu Liu & Jean-Jacques Slotine & Albert-László Barabási, 2011. "Controllability of complex networks," Nature, Nature, vol. 473(7346), pages 167-173, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alje van Dam, 2019. "Diversity and its decomposition into variety, balance and disparity," Papers in Evolutionary Economic Geography (PEEG) 1913, Utrecht University, Department of Human Geography and Spatial Planning, Group Economic Geography, revised May 2019.
    2. Ljubica Nedelkoska & Dario Diodato & Frank Neffke, 2018. "Is Our Human Capital General Enough to Withstand the Current Wave of Technological Change?," CID Working Papers 93a, Center for International Development at Harvard University.
    3. Alje van Dam, 2019. "Diversity and its decomposition into variety, balance and disparity," Papers 1902.09167, arXiv.org, revised Feb 2019.
    4. Chen, Xue & Jiao, Pengfei & Yu, Yandong & Li, Xiaoming & Tang, Minghu, 2019. "Toward link predictability of bipartite networks based on structural enhancement and structural perturbation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 527(C), pages 1-1.
    5. Frank Neffke & Angelica Sbardella & Ulrich Schetter & Andrea Tacchella, 2024. "Economic Complexity Analysis," Papers in Evolutionary Economic Geography (PEEG) 2430, Utrecht University, Department of Human Geography and Spatial Planning, Group Economic Geography, revised Oct 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei, Bo & Liu, Jie & Wei, Daijun & Gao, Cai & Deng, Yong, 2015. "Weighted k-shell decomposition for complex networks based on potential edge weights," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 277-283.
    2. Andreas Koulouris & Ioannis Katerelos & Theodore Tsekeris, 2013. "Multi-Equilibria Regulation Agent-Based Model of Opinion Dynamics in Social Networks," Interdisciplinary Description of Complex Systems - scientific journal, Croatian Interdisciplinary Society Provider Homepage: http://indecs.eu, vol. 11(1), pages 51-70.
    3. He, He & Yang, Bo & Hu, Xiaoming, 2016. "Exploring community structure in networks by consensus dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 342-353.
    4. Ellinas, Christos & Allan, Neil & Johansson, Anders, 2016. "Project systemic risk: Application examples of a network model," International Journal of Production Economics, Elsevier, vol. 182(C), pages 50-62.
    5. Yang, Hyeonchae & Jung, Woo-Sung, 2016. "Structural efficiency to manipulate public research institution networks," Technological Forecasting and Social Change, Elsevier, vol. 110(C), pages 21-32.
    6. Bo Zhang & Jianping Yuan & J. F. Pan & Xiaoyu Wu & Jianjun Luo & Li Qiu, 2017. "Global Feedback Control for Coordinated Linear Switched Reluctance Machines Network with Full-State Observation and Internal Model Compensation," Energies, MDPI, vol. 10(12), pages 1-19, December.
    7. Meng, Tao & Duan, Gaopeng & Li, Aming & Wang, Long, 2023. "Control energy scaling for target control of complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    8. Yan Zhang & Antonios Garas & Frank Schweitzer, 2019. "Control Contribution Identifies Top Driver Nodes In Complex Networks," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 22(07n08), pages 1-15, December.
    9. Tao Jia & Robert F Spivey & Boleslaw Szymanski & Gyorgy Korniss, 2015. "An Analysis of the Matching Hypothesis in Networks," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-12, June.
    10. Yang, Xu-Hua & Lou, Shun-Li & Chen, Guang & Chen, Sheng-Yong & Huang, Wei, 2013. "Scale-free networks via attaching to random neighbors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3531-3536.
    11. Zhang, Rui & Wang, Xiaomeng & Cheng, Ming & Jia, Tao, 2019. "The evolution of network controllability in growing networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 257-266.
    12. Wouter Vermeer & Otto Koppius & Peter Vervest, 2018. "The Radiation-Transmission-Reception (RTR) model of propagation: Implications for the effectiveness of network interventions," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-21, December.
    13. Zabka, Philipp & Förster, Klaus-T. & Decker, Christian & Schmid, Stefan, 2024. "A centrality analysis of the Lightning Network," Telecommunications Policy, Elsevier, vol. 48(2).
    14. Neil Johnson & Guannan Zhao & Eric Hunsader & Jing Meng & Amith Ravindar & Spencer Carran & Brian Tivnan, 2012. "Financial black swans driven by ultrafast machine ecology," Papers 1202.1448, arXiv.org.
    15. Chen, Shi-Ming & Xu, Yun-Fei & Nie, Sen, 2017. "Robustness of network controllability in cascading failure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 536-539.
    16. Xizhe Zhang & Huaizhen Wang & Tianyang Lv, 2017. "Efficient target control of complex networks based on preferential matching," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-10, April.
    17. Badhwar, Rahul & Bagler, Ganesh, 2017. "A distance constrained synaptic plasticity model of C. elegans neuronal network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 313-322.
    18. Lazaro M Sanchez-Rodriguez & Yasser Iturria-Medina & Erica A Baines & Sabela C Mallo & Mehdy Dousty & Roberto C Sotero & on behalf of The Alzheimer’s Disease Neuroimaging Initiative, 2018. "Design of optimal nonlinear network controllers for Alzheimer's disease," PLOS Computational Biology, Public Library of Science, vol. 14(5), pages 1-24, May.
    19. Pang, Shao-Peng & Hao, Fei, 2018. "Effect of interaction strength on robustness of controlling edge dynamics in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 246-257.
    20. Christos Ellinas & Neil Allan & Anders Johansson, 2016. "Exploring Structural Patterns Across Evolved and Designed Systems: A Network Perspective," Systems Engineering, John Wiley & Sons, vol. 19(3), pages 179-192, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0104813. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.