IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0102916.html
   My bibliography  Save this article

Distribution Patterns in the Native Vascular Flora of Iceland

Author

Listed:
  • Pawel Wasowicz
  • Andrzej Pasierbiński
  • Ewa Maria Przedpelska-Wasowicz
  • Hörður Kristinsson

Abstract

The aim of our study was to reveal biogeographical patterns in the native vascular flora of Iceland and to define ecological factors responsible for these patterns. We analysed dataset of more than 500,000 records containing information on the occurrence of vascular plants. Analysis of ecological factors included climatic (derived from WORLDCLIM data), topographic (calculated from digital elevation model) and geological (bedrock characteristics) variables. Spherical k-means clustering and principal component analysis were used to detect biogeographical patterns and to study the factors responsible for them. We defined 10 biotic elements exhibiting different biogeographical patterns. We showed that climatic (temperature-related) and topographic variables were the most important factors contributing to the spatial patterns within the Icelandic vascular flora and that these patterns are almost completely independent of edaphic factors (bedrock type). Our study is the first one to analyse the biogeographical differentiation of the native vascular flora of Iceland.

Suggested Citation

  • Pawel Wasowicz & Andrzej Pasierbiński & Ewa Maria Przedpelska-Wasowicz & Hörður Kristinsson, 2014. "Distribution Patterns in the Native Vascular Flora of Iceland," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-14, July.
  • Handle: RePEc:plo:pone00:0102916
    DOI: 10.1371/journal.pone.0102916
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0102916
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0102916&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0102916?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Richard G. Pearson & Steven J. Phillips & Michael M. Loranty & Pieter S. A. Beck & Theodoros Damoulas & Sarah J. Knight & Scott J. Goetz, 2013. "Shifts in Arctic vegetation and associated feedbacks under climate change," Nature Climate Change, Nature, vol. 3(7), pages 673-677, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yanlan Liu & William J. Riley & Trevor F. Keenan & Zelalem A. Mekonnen & Jennifer A. Holm & Qing Zhu & Margaret S. Torn, 2022. "Dispersal and fire limit Arctic shrub expansion," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Jacqueline Oehri & Gabriela Schaepman-Strub & Jin-Soo Kim & Raleigh Grysko & Heather Kropp & Inge Grünberg & Vitalii Zemlianskii & Oliver Sonnentag & Eugénie S. Euskirchen & Merin Reji Chacko & Giovan, 2022. "Vegetation type is an important predictor of the arctic summer land surface energy budget," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. David K Swanson, 2015. "Environmental Limits of Tall Shrubs in Alaska’s Arctic National Parks," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-34, September.
    4. Lili Xu & Zhenfa Tu & Yuke Zhou & Guangming Yu, 2018. "Profiling Human-Induced Vegetation Change in the Horqin Sandy Land of China Using Time Series Datasets," Sustainability, MDPI, vol. 10(4), pages 1-18, April.
    5. Yuhao Jin & Han Zhang & Yuchao Yan & Peitong Cong, 2020. "A Semi-Parametric Geographically Weighted Regression Approach to Exploring Driving Factors of Fractional Vegetation Cover: A Case Study of Guangdong," Sustainability, MDPI, vol. 12(18), pages 1-19, September.
    6. Zefeng Chen & Weiguang Wang & Giovanni Forzieri & Alessandro Cescatti, 2024. "Transition from positive to negative indirect CO2 effects on the vegetation carbon uptake," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    7. Gbenga Abayomi Afuye & Ahmed Mukalazi Kalumba & Israel Ropo Orimoloye, 2021. "Characterisation of Vegetation Response to Climate Change: A Review," Sustainability, MDPI, vol. 13(13), pages 1-23, June.
    8. Kruse, Stefan & Wieczorek, Mareike & Jeltsch, Florian & Herzschuh, Ulrike, 2016. "Treeline dynamics in Siberia under changing climates as inferred from an individual-based model for Larix," Ecological Modelling, Elsevier, vol. 338(C), pages 101-121.
    9. Li, Xi & Zheng, Yi & Sun, Zan & Tian, Yong & Zheng, Chunmiao & Liu, Jie & Liu, Shaomin & Xu, Ziwei, 2017. "An integrated ecohydrological modeling approach to exploring the dynamic interaction between groundwater and phreatophytes," Ecological Modelling, Elsevier, vol. 356(C), pages 127-140.
    10. Yating Chen & Xiao Cheng & Aobo Liu & Qingfeng Chen & Chengxin Wang, 2023. "Tracking lake drainage events and drained lake basin vegetation dynamics across the Arctic," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    11. Zhiqiang Wang & Heng Huang & Han Wang & Josep Peñuelas & Jordi Sardans & Ülo Niinemets & Karl J. Niklas & Yan Li & Jiangbo Xie & Ian J. Wright, 2022. "Leaf water content contributes to global leaf trait relationships," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    12. Jun Zhang & Xiao-Qian Li & Huan-Wen Peng & Lisi Hai & Andrey S. Erst & Florian Jabbour & Rosa del C. Ortiz & Fu-Cai Xia & Pamela S. Soltis & Douglas E. Soltis & Wei Wang, 2023. "Evolutionary history of the Arctic flora," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    13. Didier G. Leibovici & Helena Bylund & Christer Björkman & Nikolay Tokarevich & Tomas Thierfelder & Birgitta Evengård & Shaun Quegan, 2021. "Associating Land Cover Changes with Patterns of Incidences of Climate-Sensitive Infections: An Example on Tick-Borne Diseases in the Nordic Area," IJERPH, MDPI, vol. 18(20), pages 1-27, October.
    14. Alexey Maslakov & Larisa Zotova & Nina Komova & Mikhail Grishchenko & Dmitry Zamolodchikov & Gennady Zelensky, 2021. "Vulnerability of the Permafrost Landscapes in the Eastern Chukotka Coastal Plains to Human Impact and Climate Change," Land, MDPI, vol. 10(5), pages 1-14, April.
    15. Chunyang Liu & Chao Liu & Qianqian Sun & Tianyang Chen & Ya Fan, 2022. "Vegetation Dynamics and Climate from A Perspective of Lag-Effect: A Study Case in Loess Plateau, China," Sustainability, MDPI, vol. 14(19), pages 1-15, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0102916. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.