IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0099087.html
   My bibliography  Save this article

Strategy Switching in the Stabilization of Unstable Dynamics

Author

Listed:
  • Jacopo Zenzeri
  • Dalia De Santis
  • Pietro Morasso

Abstract

In order to understand mechanisms of strategy switching in the stabilization of unstable dynamics, this work investigates how human subjects learn to become skilled users of an underactuated bimanual tool in an unstable environment. The tool, which consists of a mass and two hand-held non-linear springs, is affected by a saddle-like force-field. The non-linearity of the springs allows the users to determine size and orientation of the tool stiffness ellipse, by using different patterns of bimanual coordination: minimal stiffness occurs when the two spring terminals are aligned and stiffness size grows by stretching them apart. Tool parameters were set such that minimal stiffness is insufficient to provide stable equilibrium whereas asymptotic stability can be achieved with sufficient stretching, although at the expense of greater effort. As a consequence, tool users have two possible strategies for stabilizing the mass in different regions of the workspace: 1) high stiffness feedforward strategy, aiming at asymptotic stability and 2) low stiffness positional feedback strategy aiming at bounded stability. The tool was simulated by a bimanual haptic robot with direct torque control of the motors. In a previous study we analyzed the behavior of naïve users and we found that they spontaneously clustered into two groups of approximately equal size. In this study we trained subjects to become expert users of both strategies in a discrete reaching task. Then we tested generalization capabilities and mechanism of strategy-switching by means of stabilization tasks which consist of tracking moving targets in the workspace. The uniqueness of the experimental setup is that it addresses the general problem of strategy-switching in an unstable environment, suggesting that complex behaviors cannot be explained in terms of a global optimization criterion but rather require the ability to switch between different sub-optimal mechanisms.

Suggested Citation

  • Jacopo Zenzeri & Dalia De Santis & Pietro Morasso, 2014. "Strategy Switching in the Stabilization of Unstable Dynamics," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-24, June.
  • Handle: RePEc:plo:pone00:0099087
    DOI: 10.1371/journal.pone.0099087
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0099087
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0099087&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0099087?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0099087. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.