IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v414y2001i6862d10.1038_35106566.html
   My bibliography  Save this article

The central nervous system stabilizes unstable dynamics by learning optimal impedance

Author

Listed:
  • Etienne Burdet

    (National University of Singapore
    Kawato Dynamic Brain Project, ERATO, JST, Hikaridai
    ATR Human Information Science Laboratories, Hikaridai)

  • Rieko Osu

    (Kawato Dynamic Brain Project, ERATO, JST, Hikaridai)

  • David W. Franklin

    (ATR Human Information Science Laboratories, Hikaridai
    School of Kinesiology, Simon Fraser University)

  • Theodore E. Milner

    (School of Kinesiology, Simon Fraser University)

  • Mitsuo Kawato

    (Kawato Dynamic Brain Project, ERATO, JST, Hikaridai
    ATR Human Information Science Laboratories, Hikaridai)

Abstract

To manipulate objects or to use tools we must compensate for any forces arising from interaction with the physical environment. Recent studies indicate that this compensation is achieved by learning an internal model of the dynamics1,2,3,4,5,6, that is, a neural representation of the relation between motor command and movement5,7. In these studies interaction with the physical environment was stable, but many common tasks are intrinsically unstable8,9. For example, keeping a screwdriver in the slot of a screw is unstable because excessive force parallel to the slot can cause the screwdriver to slip and because misdirected force can cause loss of contact between the screwdriver and the screw. Stability may be dependent on the control of mechanical impedance in the human arm because mechanical impedance can generate forces which resist destabilizing motion. Here we examined arm movements in an unstable dynamic environment created by a robotic interface. Our results show that humans learn to stabilize unstable dynamics using the skilful and energy-efficient strategy of selective control of impedance geometry.

Suggested Citation

  • Etienne Burdet & Rieko Osu & David W. Franklin & Theodore E. Milner & Mitsuo Kawato, 2001. "The central nervous system stabilizes unstable dynamics by learning optimal impedance," Nature, Nature, vol. 414(6862), pages 446-449, November.
  • Handle: RePEc:nat:nature:v:414:y:2001:i:6862:d:10.1038_35106566
    DOI: 10.1038/35106566
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/35106566
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/35106566?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ashesh Vasalya & Gowrishankar Ganesh & Abderrahmane Kheddar, 2018. "More than just co-workers: Presence of humanoid robot co-worker influences human performance," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-19, November.
    2. Bastien Berret & Adrien Conessa & Nicolas Schweighofer & Etienne Burdet, 2021. "Stochastic optimal feedforward-feedback control determines timing and variability of arm movements with or without vision," PLOS Computational Biology, Public Library of Science, vol. 17(6), pages 1-24, June.
    3. Abdelhamid Kadiallah & David W Franklin & Etienne Burdet, 2012. "Generalization in Adaptation to Stable and Unstable Dynamics," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-11, October.
    4. Bastien Berret & Frédéric Jean, 2020. "Stochastic optimal open-loop control as a theory of force and impedance planning via muscle co-contraction," PLOS Computational Biology, Public Library of Science, vol. 16(2), pages 1-28, February.
    5. Ian S Howard & David W Franklin, 2015. "Neural Tuning Functions Underlie Both Generalization and Interference," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-21, June.
    6. Nathanaël Jarrassé & Themistoklis Charalambous & Etienne Burdet, 2012. "A Framework to Describe, Analyze and Generate Interactive Motor Behaviors," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-13, November.
    7. Frédéric Crevecoeur & Stephen H Scott, 2013. "Priors Engaged in Long-Latency Responses to Mechanical Perturbations Suggest a Rapid Update in State Estimation," PLOS Computational Biology, Public Library of Science, vol. 9(8), pages 1-14, August.
    8. J Lucas McKay & Lena H Ting, 2012. "Optimization of Muscle Activity for Task-Level Goals Predicts Complex Changes in Limb Forces across Biomechanical Contexts," PLOS Computational Biology, Public Library of Science, vol. 8(4), pages 1-17, April.
    9. Jack Brookes & Faisal Mushtaq & Earle Jamieson & Aaron J Fath & Geoffrey Bingham & Peter Culmer & Richard M Wilkie & Mark Mon-Williams, 2020. "Exploring disturbance as a force for good in motor learning," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-21, May.
    10. Aldo Faisal & Dietrich Stout & Jan Apel & Bruce Bradley, 2010. "The Manipulative Complexity of Lower Paleolithic Stone Toolmaking," PLOS ONE, Public Library of Science, vol. 5(11), pages 1-11, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:414:y:2001:i:6862:d:10.1038_35106566. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.