IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0098030.html
   My bibliography  Save this article

A Random Matrix Approach to Credit Risk

Author

Listed:
  • Michael C Münnix
  • Rudi Schäfer
  • Thomas Guhr

Abstract

We estimate generic statistical properties of a structural credit risk model by considering an ensemble of correlation matrices. This ensemble is set up by Random Matrix Theory. We demonstrate analytically that the presence of correlations severely limits the effect of diversification in a credit portfolio if the correlations are not identically zero. The existence of correlations alters the tails of the loss distribution considerably, even if their average is zero. Under the assumption of randomly fluctuating correlations, a lower bound for the estimation of the loss distribution is provided.

Suggested Citation

  • Michael C Münnix & Rudi Schäfer & Thomas Guhr, 2014. "A Random Matrix Approach to Credit Risk," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-9, May.
  • Handle: RePEc:plo:pone00:0098030
    DOI: 10.1371/journal.pone.0098030
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0098030
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0098030&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0098030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rudi Schafer & Markus Sjolin & Andreas Sundin & Michal Wolanski & Thomas Guhr, 2007. "Credit risk - A structural model with jumps and correlations," Papers 0707.3478, arXiv.org, revised Jul 2007.
    2. M. Potters & J. P. Bouchaud & L. Laloux, 2005. "Financial Applications of Random Matrix Theory: Old Laces and New Pieces," Papers physics/0507111, arXiv.org.
    3. Black, Fischer & Cox, John C, 1976. "Valuing Corporate Securities: Some Effects of Bond Indenture Provisions," Journal of Finance, American Finance Association, vol. 31(2), pages 351-367, May.
    4. Vasiliki Plerou & Parameswaran Gopikrishnan & Bernd Rosenow & Luis A. Nunes Amaral & H. Eugene Stanley, 1999. "Universal and non-universal properties of cross-correlations in financial time series," Papers cond-mat/9902283, arXiv.org.
    5. Duffie, Darrell & Singleton, Kenneth J, 1999. "Modeling Term Structures of Defaultable Bonds," The Review of Financial Studies, Society for Financial Studies, vol. 12(4), pages 687-720.
    6. Robert A. Jarrow & David Lando & Stuart M. Turnbull, 2008. "A Markov Model for the Term Structure of Credit Risk Spreads," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 18, pages 411-453, World Scientific Publishing Co. Pte. Ltd..
    7. Robert A. Jarrow & Stuart M. Turnbull, 2008. "Pricing Derivatives on Financial Securities Subject to Credit Risk," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 17, pages 377-409, World Scientific Publishing Co. Pte. Ltd..
    8. Merton, Robert C, 1974. "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 29(2), pages 449-470, May.
    9. Schäfer, Rudi & Koivusalo, Alexander F.R., 2013. "Dependence of defaults and recoveries in structural credit risk models," Economic Modelling, Elsevier, vol. 30(C), pages 1-9.
    10. Schäfer, Rudi & Sjölin, Markus & Sundin, Andreas & Wolanski, Michal & Guhr, Thomas, 2007. "Credit risk—A structural model with jumps and correlations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 383(2), pages 533-569.
    11. Alexander Becker & Alexander F. R. Koivusalo & Rudi Schafer, 2012. "Empirical Evidence for the Structural Recovery Model," Papers 1203.3188, arXiv.org.
    12. Giulio Biroli & Jean-Philippe Bouchaud & Marc Potters, 2007. "The Student ensemble of correlation matrices: eigenvalue spectrum and Kullback-Leibler entropy," Papers 0710.0802, arXiv.org.
    13. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    14. Zdzisław Burda & Andrzej Jarosz & Maciej Nowak & Jerzy Jurkiewicz & Gabor Papp & Ismail Zahed, 2011. "Applying free random variables to random matrix analysis of financial data. Part I: The Gaussian case," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 1103-1124.
    15. Yuri A. Katz & Nikolai V. Shokhirev, 2010. "Default Risk Modeling Beyond the First-Passage Approximation: Extended Black-Cox Model," Papers 1002.2909, arXiv.org, revised Jun 2010.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joachim Sicking & Thomas Guhr & Rudi Schafer, 2016. "Concurrent Credit Portfolio Losses," Papers 1604.06917, arXiv.org, revised Jan 2017.
    2. Joachim Sicking & Thomas Guhr & Rudi Schäfer, 2018. "Concurrent credit portfolio losses," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-20, February.
    3. Leonardo Ermann & Dima L. Shepelyansky, 2015. "Google matrix analysis of the multiproduct world trade network," Papers 1501.03371, arXiv.org.
    4. Andreas Mühlbacher & Thomas Guhr, 2018. "Extreme Portfolio Loss Correlations in Credit Risk," Risks, MDPI, vol. 6(3), pages 1-25, July.
    5. Demidov, Denis & Frahm, Klaus M. & Shepelyansky, Dima L., 2020. "What is the central bank of Wikipedia?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    6. Andreas Mühlbacher & Thomas Guhr, 2018. "Credit Risk Meets Random Matrices: Coping with Non-Stationary Asset Correlations," Risks, MDPI, vol. 6(2), pages 1-25, April.
    7. Andreas Muhlbacher & Thomas Guhr, 2018. "Credit Risk Meets Random Matrices: Coping with Non-Stationary Asset Correlations," Papers 1803.00261, arXiv.org.
    8. Andreas Muhlbacher & Thomas Guhr, 2017. "Extreme portfolio loss correlations in credit risk," Papers 1706.09809, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schäfer, Rudi & Koivusalo, Alexander F.R., 2013. "Dependence of defaults and recoveries in structural credit risk models," Economic Modelling, Elsevier, vol. 30(C), pages 1-9.
    2. Alexander F. R. Koivusalo & Rudi Schafer, 2011. "Calibration of structural and reduced-form recovery models," Papers 1102.4864, arXiv.org.
    3. Michael C. Munnix & Rudi Schafer & Thomas Guhr, 2011. "A Random Matrix Approach to Credit Risk," Papers 1102.3900, arXiv.org, revised Jun 2011.
    4. Augusto Castillo, 2004. "Firm and Corporate Bond Valuation: A Simulation Dynamic Programming Approach," Latin American Journal of Economics-formerly Cuadernos de Economía, Instituto de Economía. Pontificia Universidad Católica de Chile., vol. 41(124), pages 345-360.
    5. Chen, An-Sing & Chu, Hsiang-Hui & Hung, Pi-Hsia & Cheng, Miao-Sih, 2020. "Financial risk and acquirers' stockholder wealth in mergers and acquisitions," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    6. Giesecke, Kay & Longstaff, Francis A. & Schaefer, Stephen & Strebulaev, Ilya, 2011. "Corporate bond default risk: A 150-year perspective," Journal of Financial Economics, Elsevier, vol. 102(2), pages 233-250.
    7. Duffie, Darrell, 2005. "Credit risk modeling with affine processes," Journal of Banking & Finance, Elsevier, vol. 29(11), pages 2751-2802, November.
    8. Chiarella, Carl & Fanelli, Viviana & Musti, Silvana, 2011. "Modelling the evolution of credit spreads using the Cox process within the HJM framework: A CDS option pricing model," European Journal of Operational Research, Elsevier, vol. 208(2), pages 95-108, January.
    9. Samuel Chege Maina, 2011. "Credit Risk Modelling in Markovian HJM Term Structure Class of Models with Stochastic Volatility," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2011, January-A.
    10. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    11. Moraux, Franck, 2004. "Modeling the business risk of financially weakened firms: A new approach for corporate bond pricing," International Review of Financial Analysis, Elsevier, vol. 13(1), pages 47-61.
    12. Nystrom, Kaj & Skoglund, Jimmy, 2006. "A credit risk model for large dimensional portfolios with application to economic capital," Journal of Banking & Finance, Elsevier, vol. 30(8), pages 2163-2197, August.
    13. International Association of Deposit Insurers, 2011. "Evaluation of Deposit Insurance Fund Sufficiency on the Basis of Risk Analysis," IADI Research Papers 11-11, International Association of Deposit Insurers.
    14. Martin Dòzsa & Karel Janda, 2015. "Corporate asset pricing models and debt contracts," CAMA Working Papers 2015-33, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    15. Gatzert, Nadine & Martin, Michael, 2012. "Quantifying credit and market risk under Solvency II: Standard approach versus internal model," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 649-666.
    16. Bhanot, Karan & Mello, Antonio S., 2006. "Should corporate debt include a rating trigger?," Journal of Financial Economics, Elsevier, vol. 79(1), pages 69-98, January.
    17. Ma, Chaoqun & Ma, Zonggang & Xiao, Shisong, 2019. "A closed-form pricing formula for vulnerable European options under stochastic yield spreads and interest rates," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 59-68.
    18. repec:wyi:journl:002109 is not listed on IDEAS
    19. Leonard Tchuindjo, 2007. "Pricing of Multi-Defaultable Bonds with a Two-Correlated-Factor Hull-White Model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(1), pages 19-39.
    20. Antonio Trujillo-Ponce & Reyes Samaniego-Medina & Clara Cardone-Riportella, 2014. "Examining what best explains corporate credit risk: accounting-based versus market-based models," Journal of Business Economics and Management, Taylor & Francis Journals, vol. 15(2), pages 253-276, April.
    21. Zhou Lu & Zhuyao Zhuo, 2021. "Modelling of Chinese corporate bond default – A machine learning approach," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 61(5), pages 6147-6191, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0098030. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.