IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0097010.html
   My bibliography  Save this article

Intra-Urban Human Mobility and Activity Transition: Evidence from Social Media Check-In Data

Author

Listed:
  • Lun Wu
  • Ye Zhi
  • Zhengwei Sui
  • Yu Liu

Abstract

Most existing human mobility literature focuses on exterior characteristics of movements but neglects activities, the driving force that underlies human movements. In this research, we combine activity-based analysis with a movement-based approach to model the intra-urban human mobility observed from about 15 million check-in records during a yearlong period in Shanghai, China. The proposed model is activity-based and includes two parts: the transition of travel demands during a specific time period and the movement between locations. For the first part, we find the transition probability between activities varies over time, and then we construct a temporal transition probability matrix to represent the transition probability of travel demands during a time interval. For the second part, we suggest that the travel demands can be divided into two classes, locationally mandatory activity (LMA) and locationally stochastic activity (LSA), according to whether the demand is associated with fixed location or not. By judging the combination of predecessor activity type and successor activity type we determine three trip patterns, each associated with a different decay parameter. To validate the model, we adopt the mechanism of an agent-based model and compare the simulated results with the observed pattern from the displacement distance distribution, the spatio-temporal distribution of activities, and the temporal distribution of travel demand transitions. The results show that the simulated patterns fit the observed data well, indicating that these findings open new directions for combining activity-based analysis with a movement-based approach using social media check-in data.

Suggested Citation

  • Lun Wu & Ye Zhi & Zhengwei Sui & Yu Liu, 2014. "Intra-Urban Human Mobility and Activity Transition: Evidence from Social Media Check-In Data," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-13, May.
  • Handle: RePEc:plo:pone00:0097010
    DOI: 10.1371/journal.pone.0097010
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0097010
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0097010&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0097010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kang, Chaogui & Ma, Xiujun & Tong, Daoqin & Liu, Yu, 2012. "Intra-urban human mobility patterns: An urban morphology perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1702-1717.
    2. Yu Liu & Chaogui Kang & Song Gao & Yu Xiao & Yuan Tian, 2012. "Understanding intra-urban trip patterns from taxi trajectory data," Journal of Geographical Systems, Springer, vol. 14(4), pages 463-483, October.
    3. Chengbin Peng & Xiaogang Jin & Ka-Chun Wong & Meixia Shi & Pietro Liò, 2012. "Collective Human Mobility Pattern from Taxi Trips in Urban Area," PLOS ONE, Public Library of Science, vol. 7(4), pages 1-8, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ruoyan Sun & David Mendez, 2017. "An application of the Continuous Opinions and Discrete Actions (CODA) model to adolescent smoking initiation," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-11, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rezapour, Shabnam & Baghaian, Atefe & Naderi, Nazanin & Sarmiento, Juan P., 2023. "Infection transmission and prevention in metropolises with heterogeneous and dynamic populations," European Journal of Operational Research, Elsevier, vol. 304(1), pages 113-138.
    2. Rongxiang Su & Zhixiang Fang & Ningxin Luo & Jingwei Zhu, 2018. "Understanding the Dynamics of the Pick-Up and Drop-Off Locations of Taxicabs in the Context of a Subsidy War among E-Hailing Apps," Sustainability, MDPI, vol. 10(4), pages 1-24, April.
    3. Yang, Xiping & Fang, Zhixiang & Xu, Yang & Yin, Ling & Li, Junyi & Lu, Shiwei, 2019. "Spatial heterogeneity in spatial interaction of human movements—Insights from large-scale mobile positioning data," Journal of Transport Geography, Elsevier, vol. 78(C), pages 29-40.
    4. He, Zhengbing, 2020. "Spatial-temporal fractal of urban agglomeration travel demand," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    5. Jing Yang & Disheng Yi & Jingjing Liu & Yusi Liu & Jing Zhang, 2019. "Spatiotemporal Change Characteristics of Nodes’ Heterogeneity in the Directed and Weighted Spatial Interaction Networks: Case Study within the Sixth Ring Road of Beijing, China," Sustainability, MDPI, vol. 11(22), pages 1-15, November.
    6. Meead Saberi & Taha H. Rashidi & Milad Ghasri & Kenneth Ewe, 2018. "A Complex Network Methodology for Travel Demand Model Evaluation and Validation," Networks and Spatial Economics, Springer, vol. 18(4), pages 1051-1073, December.
    7. Yong Gao & Jiajun Liu & Yan Xu & Lan Mu & Yu Liu, 2019. "A Spatiotemporal Constraint Non-Negative Matrix Factorization Model to Discover Intra-Urban Mobility Patterns from Taxi Trips," Sustainability, MDPI, vol. 11(15), pages 1-22, August.
    8. Cheng Jin & Jing Xu, 2020. "Using user-generated content data to analyze tourist mobility between hotels and attractions in cities," Environment and Planning B, , vol. 47(5), pages 826-840, June.
    9. Meead Saberi & Hani S. Mahmassani & Dirk Brockmann & Amir Hosseini, 2017. "A complex network perspective for characterizing urban travel demand patterns: graph theoretical analysis of large-scale origin–destination demand networks," Transportation, Springer, vol. 44(6), pages 1383-1402, November.
    10. Shanshan Wan & Zhuo Chen & Cheng Lyu & Ruofan Li & Yuntao Yue & Ying Liu, 2022. "Research on disaster information dissemination based on social sensor networks," International Journal of Distributed Sensor Networks, , vol. 18(3), pages 15501329221, March.
    11. Kirtonia, Sajeeb & Sun, Yanshuo, 2022. "Evaluating rail transit's comparative advantages in travel cost and time over taxi with open data in two U.S. cities," Transport Policy, Elsevier, vol. 115(C), pages 75-87.
    12. Chen, Yong & Geng, Maosi & Zeng, Jiaqi & Yang, Di & Zhang, Lei & Chen, Xiqun (Michael), 2023. "A novel ensemble model with conditional intervening opportunities for ride-hailing travel mobility estimation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 628(C).
    13. Xingang Zhou & Anthony G. O. Yeh, 2021. "Understanding the modifiable areal unit problem and identifying appropriate spatial unit in jobs–housing balance and employment self-containment using big data," Transportation, Springer, vol. 48(3), pages 1267-1283, June.
    14. Chaogui Kang & Yu Liu & Diansheng Guo & Kun Qin, 2015. "A Generalized Radiation Model for Human Mobility: Spatial Scale, Searching Direction and Trip Constraint," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-11, November.
    15. Situ, Xinyi, 2024. "From mobility to crime: Collective patterns of human mobility and gun violence in Baltimore City," Journal of Criminal Justice, Elsevier, vol. 94(C).
    16. Tu, Wei & Cao, Rui & Yue, Yang & Zhou, Baoding & Li, Qiuping & Li, Qingquan, 2018. "Spatial variations in urban public ridership derived from GPS trajectories and smart card data," Journal of Transport Geography, Elsevier, vol. 69(C), pages 45-57.
    17. Li, Ze-Tao & Nie, Wei-Peng & Cai, Shi-Min & Zhao, Zhi-Dan & Zhou, Tao, 2023. "Exploring the topological characteristics of urban trip networks based on taxi trajectory data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    18. Zheng, Zhong & Zhou, Suhong & Deng, Xingdong, 2021. "Exploring both home-based and work-based jobs-housing balance by distance decay effect," Journal of Transport Geography, Elsevier, vol. 93(C).
    19. Cai, Hua & Zhan, Xiaowei & Zhu, Ji & Jia, Xiaoping & Chiu, Anthony S.F. & Xu, Ming, 2016. "Understanding taxi travel patterns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 590-597.
    20. Chaogui Kang & Dongwan Fan & Hongzan Jiao, 2021. "Validating activity, time, and space diversity as essential components of urban vitality," Environment and Planning B, , vol. 48(5), pages 1180-1197, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0097010. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.