IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0094920.html
   My bibliography  Save this article

Exploring Empirical Rank-Frequency Distributions Longitudinally through a Simple Stochastic Process

Author

Listed:
  • Benjamin J Finley
  • Kalevi Kilkki

Abstract

The frequent appearance of empirical rank-frequency laws, such as Zipf’s law, in a wide range of domains reinforces the importance of understanding and modeling these laws and rank-frequency distributions in general. In this spirit, we utilize a simple stochastic cascade process to simulate several empirical rank-frequency distributions longitudinally. We focus especially on limiting the process’s complexity to increase accessibility for non-experts in mathematics. The process provides a good fit for many empirical distributions because the stochastic multiplicative nature of the process leads to an often observed concave rank-frequency distribution (on a log-log scale) and the finiteness of the cascade replicates real-world finite size effects. Furthermore, we show that repeated trials of the process can roughly simulate the longitudinal variation of empirical ranks. However, we find that the empirical variation is often less that the average simulated process variation, likely due to longitudinal dependencies in the empirical datasets. Finally, we discuss the process limitations and practical applications.

Suggested Citation

  • Benjamin J Finley & Kalevi Kilkki, 2014. "Exploring Empirical Rank-Frequency Distributions Longitudinally through a Simple Stochastic Process," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-14, April.
  • Handle: RePEc:plo:pone00:0094920
    DOI: 10.1371/journal.pone.0094920
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0094920
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0094920&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0094920?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hernandez, Gonzalo, 2003. "Two-dimensional model for binary fragmentation process with random system of forces, random stopping and material resistance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 323(C), pages 1-8.
    2. Toivonen, Riitta & Onnela, Jukka-Pekka & Saramäki, Jari & Hyvönen, Jörkki & Kaski, Kimmo, 2006. "A model for social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 371(2), pages 851-860.
    3. Dettmann, Carl P. & Georgiou, Orestis, 2009. "Product of n independent uniform random variables," Statistics & Probability Letters, Elsevier, vol. 79(24), pages 2501-2503, December.
    4. Glen, Andrew G. & Leemis, Lawrence M. & Drew, John H., 2004. "Computing the distribution of the product of two continuous random variables," Computational Statistics & Data Analysis, Elsevier, vol. 44(3), pages 451-464, January.
    5. Andrew G. Glen & Lawrence M. Leemis & John H. Drew, 1997. "A Generalized Univariate Change-of-Variable Transformation Technique," INFORMS Journal on Computing, INFORMS, vol. 9(3), pages 288-295, August.
    6. Lloyd, C. J. & Williams, E. J., 1988. "Recursive splitting of an interval when the proportions are identical and independent random variables," Stochastic Processes and their Applications, Elsevier, vol. 28(1), pages 111-122, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Valdez, L.D. & Sibona, G.J. & Condat, C.A., 2018. "Impact of rainfall on Aedes aegypti populations," Ecological Modelling, Elsevier, vol. 385(C), pages 96-105.
    2. Carlos Velarde & Alberto Robledo, 2019. "Dynamical analogues of rank distributions," PLOS ONE, Public Library of Science, vol. 14(2), pages 1-15, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antonio Seijas-Macias & Amílcar Oliveira & Teresa A. Oliveira, 2023. "A New R-Function to Estimate the PDF of the Product of Two Uncorrelated Normal Variables," Mathematics, MDPI, vol. 11(16), pages 1-13, August.
    2. Sel Ly & Kim-Hung Pho & Sal Ly & Wing-Keung Wong, 2019. "Determining Distribution for the Product of Random Variables by Using Copulas," Risks, MDPI, vol. 7(1), pages 1-20, February.
    3. Amílcar Oliveira & Teresa Oliveira & Antonio Seijas-Macías, 2018. "The uniform distribution product: an approach to the inventory model using R," Journal of Applied Statistics, Taylor & Francis Journals, vol. 45(2), pages 284-297, January.
    4. Yuguang Ipsen & Ross Maller & Soudabeh Shemehsavar, 2020. "Limiting Distributions of Generalised Poisson–Dirichlet Distributions Based on Negative Binomial Processes," Journal of Theoretical Probability, Springer, vol. 33(4), pages 1974-2000, December.
    5. Johansson, Tobias, 2017. "Gossip spread in social network Models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 126-134.
    6. Glickman, Theodore S. & Xu, Feng, 2008. "The distribution of the product of two triangular random variables," Statistics & Probability Letters, Elsevier, vol. 78(16), pages 2821-2826, November.
    7. Postigo-Boix, Marcos & Melús-Moreno, José L., 2018. "A social model based on customers’ profiles for analyzing the churning process in the mobile market of data plans," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 571-592.
    8. Khouja, Moutaz & Wang, Yulan, 2010. "The impact of digital channel distribution on the experience goods industry," European Journal of Operational Research, Elsevier, vol. 207(1), pages 481-491, November.
    9. Zhou, Bin & Yan, Xiao-Yong & Xu, Xiao-Ke & Xu, Xiao-Ting & Wang, Nianxin, 2018. "Evolutionary of online social networks driven by pareto wealth distribution and bidirectional preferential attachment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 427-434.
    10. Carson, Richard T. & Czajkowski, Mikołaj, 2019. "A new baseline model for estimating willingness to pay from discrete choice models," Journal of Environmental Economics and Management, Elsevier, vol. 95(C), pages 57-61.
    11. Nils Lid Hjort & Andrea Ongaro, 2006. "On the distribution of random Dirichlet jumps," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(1), pages 61-92.
    12. Kashyap, Ravi, 2019. "The perfect marriage and much more: Combining dimension reduction, distance measures and covariance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    13. Guan, Yuan-Pan & You, Zhi-Qiang & Han, Xiao-Pu, 2016. "Reconstruction of social group networks from friendship networks using a tag-based model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 485-492.
    14. Zhou, Bin & Xu, Xiao-Ting & Liu, Jian-Guo & Xu, Xiao-Ke & Wang, Nianxin, 2019. "Information interaction model for the mobile communication networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1170-1176.
    15. Yuan, Wei-Guo & Liu, Yun, 2015. "A mixing evolution model for bidirectional microblog user networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 432(C), pages 167-179.
    16. Irene Crimaldi & Michela Del Vicario & Greg Morrison & Walter Quattrociocchi & Massimo Riccaboni, 2015. "Homophily and Triadic Closure in Evolving Social Networks," Working Papers 3/2015, IMT School for Advanced Studies Lucca, revised May 2015.
    17. Lv, Yanhua & Ding, Ying & Song, Min & Duan, Zhiguang, 2018. "Topology-driven trend analysis for drug discovery," Journal of Informetrics, Elsevier, vol. 12(3), pages 893-905.
    18. Ikeda, Nobutoshi, 2015. "Effects of triad formations stimulated by intermediaries on network topology," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 897-908.
    19. , David, 2016. "The formation of networks with local spillovers and limited observability," Theoretical Economics, Econometric Society, vol. 11(3), September.
    20. Konstadinos G. Goulias & Ram M. Pendyala, 2014. "Choice context," Chapters, in: Stephane Hess & Andrew Daly (ed.), Handbook of Choice Modelling, chapter 5, pages 101-130, Edward Elgar Publishing.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0094920. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.