IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v323y2003icp1-8.html
   My bibliography  Save this article

Two-dimensional model for binary fragmentation process with random system of forces, random stopping and material resistance

Author

Listed:
  • Hernandez, Gonzalo

Abstract

This work presents the numerical results obtained from large-scale parallel distributed simulations of a self-similar model for two-dimensional discrete in time and continuous in space binary fragmentation. Its main characteristics are: (1) continuous material; (2) uniform and independent random distribution of the net forces, denoted by fx and fy, that produce the fracture; (3) these net forces act at random positions of the fragments and generate the fracture following a maximum criterion; (4) the fragmentation process has the property that every fragment fracture stops at each time step with an uniform probability p; (5) the material presents an uniform resistance r to the fracture process. Through a numerical study was obtained an approximate power law behavior for the small fragments size distribution for a wide range of the main parameters of the model: the stopping probability p and the resistance r. The visualizations of the model resemble real systems. The approximate power law distribution is a non-trivial result, which reproduces empirical results of some highly energetic fracture processes.

Suggested Citation

  • Hernandez, Gonzalo, 2003. "Two-dimensional model for binary fragmentation process with random system of forces, random stopping and material resistance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 323(C), pages 1-8.
  • Handle: RePEc:eee:phsmap:v:323:y:2003:i:c:p:1-8
    DOI: 10.1016/S0378-4371(03)00032-3
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437103000323
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/S0378-4371(03)00032-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Benjamin J Finley & Kalevi Kilkki, 2014. "Exploring Empirical Rank-Frequency Distributions Longitudinally through a Simple Stochastic Process," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-14, April.
    2. Hernandez, Gonzalo & Salinas, Luis & Avila, Andres, 2006. "n-ary fragmentation model with nearest point flaw and maximal net force fracture," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(2), pages 565-572.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:323:y:2003:i:c:p:1-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.