IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0093048.html
   My bibliography  Save this article

Insights into the Origin of Nematode Chemosensory GPCRs: Putative Orthologs of the Srw Family Are Found across Several Phyla of Protostomes

Author

Listed:
  • Arunkumar Krishnan
  • Markus Sällman Almén
  • Robert Fredriksson
  • Helgi B Schiöth

Abstract

Nematode chemosensory GPCRs in Caenorhabditis elegans (NemChRs) are classified into 19 gene families, and are initially thought to have split from the ancestral Rhodopsin family of GPCRs. However, earlier studies have shown that among all 19 NemChR gene families, only the srw family has a clear sequence relationship to the ancestral Rhodopsin GPCR family. Yet, the phylogenetic relationships between the srw family of NemChRs and the Rhodopsin subfamilies are not fully understood. Also, a widespread search was not previously performed to check for the presence of putative srw family-like sequences or the other 18 NemChR families in several new protostome species outside the nematode lineage. In this study, we have investigated for the presence of 19 NemChR families across 26 eukaryotic species, covering basal eukaryotic branches and provide the first evidence that the srw family of NemChRs is indeed present across several phyla of protostomes. We could identify 29 putative orthologs of the srw family in insects (15 genes), molluscs (11 genes) and Schistosoma mansoni (3 genes). Furthermore, using HMM-HMM profile based comparisons and phylogenetic analysis we show that among all Rhodopsin subfamilies, the peptide and SOG (somatostatin/opioid/galanin) subfamilies are phylogenetically the closest relatives to the srw family of NemChRs. Taken together, we demonstrate that the srw family split from the large Rhodopsin family, possibly from the peptide and/or SOG subfamilies, well before the split of the nematode lineage, somewhere close to the divergence of the common ancestor of protostomes. Our analysis also suggests that the srsx family of NemChRs shares a clear sequence homology with the Rhodopsin subfamilies, as well as with few of the vertebrate olfactory receptors. Overall, this study provides further insights into the evolutionary events that shaped the GPCR chemosensory system in protostome species.

Suggested Citation

  • Arunkumar Krishnan & Markus Sällman Almén & Robert Fredriksson & Helgi B Schiöth, 2014. "Insights into the Origin of Nematode Chemosensory GPCRs: Putative Orthologs of the Srw Family Are Found across Several Phyla of Protostomes," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-12, March.
  • Handle: RePEc:plo:pone00:0093048
    DOI: 10.1371/journal.pone.0093048
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0093048
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0093048&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0093048?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Cornelia I. Bargmann, 2006. "Comparative chemosensation from receptors to ecology," Nature, Nature, vol. 444(7117), pages 295-301, November.
    2. Stephen D. Liberles & Linda B. Buck, 2006. "A second class of chemosensory receptors in the olfactory epithelium," Nature, Nature, vol. 442(7103), pages 645-650, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hao-Ching Jiang & Sung Jin Park & I-Hao Wang & Daniel M. Bear & Alexandra Nowlan & Paul L. Greer, 2024. "CD20/MS4A1 is a mammalian olfactory receptor expressed in a subset of olfactory sensory neurons that mediates innate avoidance of predators," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    2. Gregory Zilberg & Alexandra K. Parpounas & Audrey L. Warren & Shifan Yang & Daniel Wacker, 2024. "Molecular basis of human trace amine-associated receptor 1 activation," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Maxime Policarpo & Maude W. Baldwin & Didier Casane & Walter Salzburger, 2024. "Diversity and evolution of the vertebrate chemoreceptor gene repertoire," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    4. Anastasiia Gusach & Yang Lee & Armin Nikpour Khoshgrudi & Elizaveta Mukhaleva & Ning Ma & Eline J. Koers & Qingchao Chen & Patricia C. Edwards & Fanglu Huang & Jonathan Kim & Filippo Mancia & Dmitry B, 2024. "Molecular recognition of an odorant by the murine trace amine-associated receptor TAAR7f," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Jason B Castro & Arvind Ramanathan & Chakra S Chennubhotla, 2013. "Categorical Dimensions of Human Odor Descriptor Space Revealed by Non-Negative Matrix Factorization," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-16, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0093048. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.