IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0082693.html
   My bibliography  Save this article

Fluorescence Imaging-Based High-Throughput Screening of Fast- and Slow-Cycling LOV Proteins

Author

Listed:
  • Fuun Kawano
  • Yuki Aono
  • Hideyuki Suzuki
  • Moritoshi Sato

Abstract

Light-oxygen-voltage (LOV) domains function as blue light-inducible molecular switches. The photosensory LOV domains derived from plants and fungi have provided an indispensable tool for optogenetics. Here we develop a high-throughput screening system to efficiently improve switch-off kinetics of LOV domains. The present system is based on fluorescence imaging of thermal reversion of a flavin cofactor bound to LOV domains. We conducted multi site-directed random mutagenesis of seven amino acid residues surrounding the flavin cofactor of the second LOV domain derived from Avena sativa phototropin 1 (AsLOV2). The gene library was introduced into Escherichia coli cells. Then thermal reversion of AsLOV2 variants, respectively expressed in different bacterial colonies on agar plate, was imaged with a stereoscopic fluorescence microscope. Based on the mutagenesis and imaging-based screening, we isolated 12 different variants showing substantially faster thermal reversion kinetics than wild-type AsLOV2. Among them, AsLOV2-V416T exhibited thermal reversion with a time constant of 2.6 s, 21-fold faster than wild-type AsLOV2. With a slight modification of the present approach, we also have efficiently isolated 8 different decelerated variants, represented by AsLOV2-V416L that exhibited thermal reversion with a time constant of 4.3×103 s (78-fold slower than wild-type AsLOV2). The present approach based on fluorescence imaging of the thermal reversion of the flavin cofactor is generally applicable to a variety of blue light-inducible molecular switches and may provide a new opportunity for the development of molecular tools for emerging optogenetics.

Suggested Citation

  • Fuun Kawano & Yuki Aono & Hideyuki Suzuki & Moritoshi Sato, 2013. "Fluorescence Imaging-Based High-Throughput Screening of Fast- and Slow-Cycling LOV Proteins," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-8, December.
  • Handle: RePEc:plo:pone00:0082693
    DOI: 10.1371/journal.pone.0082693
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0082693
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0082693&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0082693?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yi I. Wu & Daniel Frey & Oana I. Lungu & Angelika Jaehrig & Ilme Schlichting & Brian Kuhlman & Klaus M. Hahn, 2009. "A genetically encoded photoactivatable Rac controls the motility of living cells," Nature, Nature, vol. 461(7260), pages 104-108, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Seong Ok Kim & So Ri Yun & Hyosub Lee & Junbeom Jo & Doo-Sik Ahn & Doyeong Kim & Irina Kosheleva & Robert Henning & Jungmin Kim & Changin Kim & Seyoung You & Hanui Kim & Sang Jin Lee & Hyotcherl Ihee, 2024. "Serial X-ray liquidography: multi-dimensional assay framework for exploring biomolecular structural dynamics with microgram quantities," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sijia Zhou & Peng Li & Jiaying Liu & Juan Liao & Hao Li & Lin Chen & Zhihua Li & Qiongyu Guo & Karine Belguise & Bin Yi & Xiaobo Wang, 2022. "Two Rac1 pools integrate the direction and coordination of collective cell migration," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    2. Kirstin Meyer & Nicholas C. Lammers & Lukasz J. Bugaj & Hernan G. Garcia & Orion D. Weiner, 2023. "Optogenetic control of YAP reveals a dynamic communication code for stem cell fate and proliferation," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    3. Liyuan Zhu & Harold M. McNamara & Jared E. Toettcher, 2023. "Light-switchable transcription factors obtained by direct screening in mammalian cells," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    4. Suchet Nanda & Abram Calderon & Arya Sachan & Thanh-Thuy Duong & Johannes Koch & Xiaoyi Xin & Djamschid Solouk-Stahlberg & Yao-Wen Wu & Perihan Nalbant & Leif Dehmelt, 2023. "Rho GTPase activity crosstalk mediated by Arhgef11 and Arhgef12 coordinates cell protrusion-retraction cycles," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    5. Julia Dietler & Renate Gelfert & Jennifer Kaiser & Veniamin Borin & Christian Renzl & Sebastian Pilsl & Américo Tavares Ranzani & Andrés García de Fuentes & Tobias Gleichmann & Ralph P. Diensthuber & , 2022. "Signal transduction in light-oxygen-voltage receptors lacking the active-site glutamine," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    6. Willow Coyote-Maestas & David Nedrud & Antonio Suma & Yungui He & Kenneth A. Matreyek & Douglas M. Fowler & Vincenzo Carnevale & Chad L. Myers & Daniel Schmidt, 2021. "Probing ion channel functional architecture and domain recombination compatibility by massively parallel domain insertion profiling," Nature Communications, Nature, vol. 12(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0082693. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.