IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-54351-6.html
   My bibliography  Save this article

Image-guided optogenetic spatiotemporal tissue patterning using μPatternScope

Author

Listed:
  • Sant Kumar

    (ETH Zürich)

  • Hannes M. Beyer

    (Heinrich-Heine-University Düsseldorf)

  • Mingzhe Chen

    (ETH Zürich)

  • Matias D. Zurbriggen

    (Heinrich-Heine-University Düsseldorf
    Düsseldorf)

  • Mustafa Khammash

    (ETH Zürich)

Abstract

In the field of tissue engineering, achieving precise spatiotemporal control over engineered cells is critical for sculpting functional 2D cell cultures into intricate morphological shapes. In this study, we engineer light-responsive mammalian cells and target them with dynamic light patterns to realize 2D cell culture patterning control. To achieve this, we developed μPatternScope (μPS), a modular framework for software-controlled projection of high-resolution light patterns onto microscope samples. μPS comprises hardware and software suite governing pattern projection and microscope maneuvers. Together with a 2D culture of the engineered cells, we utilize μPS for controlled spatiotemporal induction of apoptosis to generate desired 2D shapes. Furthermore, we introduce interactive closed-loop patterning, enabling a dynamic feedback mechanism between the measured cell culture patterns and the light illumination profiles to achieve the desired target patterning trends. Our work offers innovative tools for advanced tissue engineering applications through seamless fusion of optogenetics, optical engineering, and cybernetics.

Suggested Citation

  • Sant Kumar & Hannes M. Beyer & Mingzhe Chen & Matias D. Zurbriggen & Mustafa Khammash, 2024. "Image-guided optogenetic spatiotemporal tissue patterning using μPatternScope," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54351-6
    DOI: 10.1038/s41467-024-54351-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-54351-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-54351-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dirk Ollech & Tim Pflästerer & Adam Shellard & Chiara Zambarda & Joachim Pius Spatz & Philippe Marcq & Roberto Mayor & Richard Wombacher & Elisabetta Ada Cavalcanti-Adam, 2020. "Author Correction: An optochemical tool for light-induced dissociation of adherens junctions to control mechanical coupling between cells," Nature Communications, Nature, vol. 11(1), pages 1-1, December.
    2. Melinda Liu Perkins & Dirk Benzinger & Murat Arcak & Mustafa Khammash, 2020. "Cell-in-the-loop pattern formation with optogenetically emulated cell-to-cell signaling," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    3. Remy Chait & Jakob Ruess & Tobias Bergmiller & Gašper Tkačik & Călin C. Guet, 2017. "Shaping bacterial population behavior through computer-interfaced control of individual cells," Nature Communications, Nature, vol. 8(1), pages 1-11, December.
    4. Hannes M. Beyer & Sant Kumar & Marius Nieke & Carroll M. C. Diehl & Kun Tang & Sara Shumka & Cha San Koh & Christian Fleck & Jamie A. Davies & Mustafa Khammash & Matias D. Zurbriggen, 2024. "Genetically-stable engineered optogenetic gene switches modulate spatial cell morphogenesis in two- and three-dimensional tissue cultures," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    5. Dirk Ollech & Tim Pflästerer & Adam Shellard & Chiara Zambarda & Joachim Pius Spatz & Philippe Marcq & Roberto Mayor & Richard Wombacher & Elisabetta Ada Cavalcanti-Adam, 2020. "An optochemical tool for light-induced dissociation of adherens junctions to control mechanical coupling between cells," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
    6. Yi I. Wu & Daniel Frey & Oana I. Lungu & Angelika Jaehrig & Ilme Schlichting & Brian Kuhlman & Klaus M. Hahn, 2009. "A genetically encoded photoactivatable Rac controls the motility of living cells," Nature, Nature, vol. 461(7260), pages 104-108, September.
    7. Zachary R. Fox & Steven Fletcher & Achille Fraisse & Chetan Aditya & Sebastián Sosa-Carrillo & Julienne Petit & Sébastien Gilles & François Bertaux & Jakob Ruess & Gregory Batt, 2022. "Enabling reactive microscopy with MicroMator," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jean-Baptiste Lugagne & Caroline M. Blassick & Mary J. Dunlop, 2024. "Deep model predictive control of gene expression in thousands of single cells," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Michael B. Sheets & Nathan Tague & Mary J. Dunlop, 2023. "An optogenetic toolkit for light-inducible antibiotic resistance," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Zachary R. Fox & Steven Fletcher & Achille Fraisse & Chetan Aditya & Sebastián Sosa-Carrillo & Julienne Petit & Sébastien Gilles & François Bertaux & Jakob Ruess & Gregory Batt, 2022. "Enabling reactive microscopy with MicroMator," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. Brice Nzigou Mombo & Brent M. Bijonowski & Christopher A. Raab & Stephan Niland & Katrin Brockhaus & Marc Müller & Johannes A. Eble & Seraphine V. Wegner, 2023. "Reversible photoregulation of cell-cell adhesions with opto-E-cadherin," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    5. Sijia Zhou & Peng Li & Jiaying Liu & Juan Liao & Hao Li & Lin Chen & Zhihua Li & Qiongyu Guo & Karine Belguise & Bin Yi & Xiaobo Wang, 2022. "Two Rac1 pools integrate the direction and coordination of collective cell migration," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    6. Liyuan Zhu & Harold M. McNamara & Jared E. Toettcher, 2023. "Light-switchable transcription factors obtained by direct screening in mammalian cells," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    7. Suchet Nanda & Abram Calderon & Arya Sachan & Thanh-Thuy Duong & Johannes Koch & Xiaoyi Xin & Djamschid Solouk-Stahlberg & Yao-Wen Wu & Perihan Nalbant & Leif Dehmelt, 2023. "Rho GTPase activity crosstalk mediated by Arhgef11 and Arhgef12 coordinates cell protrusion-retraction cycles," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    8. Julia Dietler & Renate Gelfert & Jennifer Kaiser & Veniamin Borin & Christian Renzl & Sebastian Pilsl & Américo Tavares Ranzani & Andrés García de Fuentes & Tobias Gleichmann & Ralph P. Diensthuber & , 2022. "Signal transduction in light-oxygen-voltage receptors lacking the active-site glutamine," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    9. Willow Coyote-Maestas & David Nedrud & Antonio Suma & Yungui He & Kenneth A. Matreyek & Douglas M. Fowler & Vincenzo Carnevale & Chad L. Myers & Daniel Schmidt, 2021. "Probing ion channel functional architecture and domain recombination compatibility by massively parallel domain insertion profiling," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    10. François Bertaux & Sebastián Sosa-Carrillo & Viktoriia Gross & Achille Fraisse & Chetan Aditya & Mariela Furstenheim & Gregory Batt, 2022. "Enhancing bioreactor arrays for automated measurements and reactive control with ReacSight," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    11. Fuun Kawano & Yuki Aono & Hideyuki Suzuki & Moritoshi Sato, 2013. "Fluorescence Imaging-Based High-Throughput Screening of Fast- and Slow-Cycling LOV Proteins," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-8, December.
    12. Kirstin Meyer & Nicholas C. Lammers & Lukasz J. Bugaj & Hernan G. Garcia & Orion D. Weiner, 2023. "Optogenetic control of YAP reveals a dynamic communication code for stem cell fate and proliferation," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    13. Sebastián Sosa-Carrillo & Henri Galez & Sara Napolitano & François Bertaux & Gregory Batt, 2023. "Maximizing protein production by keeping cells at optimal secretory stress levels using real-time control approaches," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54351-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.