IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0082450.html
   My bibliography  Save this article

Hierarchical Interactions Model for Predicting Mild Cognitive Impairment (MCI) to Alzheimer's Disease (AD) Conversion

Author

Listed:
  • Han Li
  • Yashu Liu
  • Pinghua Gong
  • Changshui Zhang
  • Jieping Ye
  • for the Alzheimers Disease Neuroimaging Initiative

Abstract

Identifying patients with Mild Cognitive Impairment (MCI) who are likely to convert to dementia has recently attracted increasing attention in Alzheimer's disease (AD) research. An accurate prediction of conversion from MCI to AD can aid clinicians to initiate treatments at early stage and monitor their effectiveness. However, existing prediction systems based on the original biosignatures are not satisfactory. In this paper, we propose to fit the prediction models using pairwise biosignature interactions, thus capturing higher-order relationship among biosignatures. Specifically, we employ hierarchical constraints and sparsity regularization to prune the high-dimensional input features. Based on the significant biosignatures and underlying interactions identified, we build classifiers to predict the conversion probability based on the selected features. We further analyze the underlying interaction effects of different biosignatures based on the so-called stable expectation scores. We have used 293 MCI subjects from Alzheimer's Disease Neuroimaging Initiative (ADNI) database that have MRI measurements at the baseline to evaluate the effectiveness of the proposed method. Our proposed method achieves better classification performance than state-of-the-art methods. Moreover, we discover several significant interactions predictive of MCI-to-AD conversion. These results shed light on improving the prediction performance using interaction features.

Suggested Citation

  • Han Li & Yashu Liu & Pinghua Gong & Changshui Zhang & Jieping Ye & for the Alzheimers Disease Neuroimaging Initiative, 2014. "Hierarchical Interactions Model for Predicting Mild Cognitive Impairment (MCI) to Alzheimer's Disease (AD) Conversion," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-11, January.
  • Handle: RePEc:plo:pone00:0082450
    DOI: 10.1371/journal.pone.0082450
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0082450
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0082450&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0082450?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Radchenko, Peter & James, Gareth M., 2010. "Variable Selection Using Adaptive Nonlinear Interaction Structures in High Dimensions," Journal of the American Statistical Association, American Statistical Association, vol. 105(492), pages 1541-1553.
    2. Choi, Nam Hee & Li, William & Zhu, Ji, 2010. "Variable Selection With the Strong Heredity Constraint and Its Oracle Property," Journal of the American Statistical Association, American Statistical Association, vol. 105(489), pages 354-364.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Loann David Denis Desboulets, 2018. "A Review on Variable Selection in Regression Analysis," Econometrics, MDPI, vol. 6(4), pages 1-27, November.
    2. Li Yun & O’Connor George T. & Dupuis Josée & Kolaczyk Eric, 2015. "Modeling gene-covariate interactions in sparse regression with group structure for genome-wide association studies," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 14(3), pages 265-277, June.
    3. Bhatnagar, Sahir R. & Lu, Tianyuan & Lovato, Amanda & Olds, David L. & Kobor, Michael S. & Meaney, Michael J. & O'Donnell, Kieran & Yang, Archer Y. & Greenwood, Celia M.T., 2023. "A sparse additive model for high-dimensional interactions with an exposure variable," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
    4. Jonathan Boss & Alexander Rix & Yin‐Hsiu Chen & Naveen N. Narisetty & Zhenke Wu & Kelly K. Ferguson & Thomas F. McElrath & John D. Meeker & Bhramar Mukherjee, 2021. "A hierarchical integrative group least absolute shrinkage and selection operator for analyzing environmental mixtures," Environmetrics, John Wiley & Sons, Ltd., vol. 32(8), December.
    5. Yao Dong & He Jiang, 2018. "A Two-Stage Regularization Method for Variable Selection and Forecasting in High-Order Interaction Model," Complexity, Hindawi, vol. 2018, pages 1-12, November.
    6. Gregor Stiglic & Petra Povalej Brzan & Nino Fijacko & Fei Wang & Boris Delibasic & Alexandros Kalousis & Zoran Obradovic, 2015. "Comprehensible Predictive Modeling Using Regularized Logistic Regression and Comorbidity Based Features," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-11, December.
    7. Wang, Cheng & Chen, Haozhe & Jiang, Binyan, 2024. "HiQR: An efficient algorithm for high-dimensional quadratic regression with penalties," Computational Statistics & Data Analysis, Elsevier, vol. 192(C).
    8. Yawei He & Zehua Chen, 2016. "The EBIC and a sequential procedure for feature selection in interactive linear models with high-dimensional data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 68(1), pages 155-180, February.
    9. Feng Li & Yajie Li & Sanying Feng, 2021. "Estimation for Varying Coefficient Models with Hierarchical Structure," Mathematics, MDPI, vol. 9(2), pages 1-18, January.
    10. Wang, Lu & Shen, Jincheng & Thall, Peter F., 2014. "A modified adaptive Lasso for identifying interactions in the Cox model with the heredity constraint," Statistics & Probability Letters, Elsevier, vol. 93(C), pages 126-133.
    11. Radchenko, Peter, 2015. "High dimensional single index models," Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 266-282.
    12. He Jiang, 2022. "A novel robust structural quadratic forecasting model and applications," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(6), pages 1156-1180, September.
    13. Zeyu Bian & Erica E. M. Moodie & Susan M. Shortreed & Sahir Bhatnagar, 2023. "Variable selection in regression‐based estimation of dynamic treatment regimes," Biometrics, The International Biometric Society, vol. 79(2), pages 988-999, June.
    14. Dewei Zhang & Yin Liu & Sam Davanloo Tajbakhsh, 2022. "A First-Order Optimization Algorithm for Statistical Learning with Hierarchical Sparsity Structure," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 1126-1140, March.
    15. Florian Ziel, 2015. "Iteratively reweighted adaptive lasso for conditional heteroscedastic time series with applications to AR-ARCH type processes," Papers 1502.06557, arXiv.org, revised Dec 2015.
    16. Fu, Penghui & Tan, Zhiqiang, 2024. "Block-wise primal-dual algorithms for large-scale doubly penalized ANOVA modeling," Computational Statistics & Data Analysis, Elsevier, vol. 194(C).
    17. Justin B. Post & Howard D. Bondell, 2013. "Factor Selection and Structural Identification in the Interaction ANOVA Model," Biometrics, The International Biometric Society, vol. 69(1), pages 70-79, March.
    18. Ziel, Florian, 2016. "Iteratively reweighted adaptive lasso for conditional heteroscedastic time series with applications to AR–ARCH type processes," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 773-793.
    19. Jacob Bien & Florentina Bunea & Luo Xiao, 2016. "Convex Banding of the Covariance Matrix," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 834-845, April.
    20. VÁZQUEZ-ALCOCER, Alan & SCHOEN, Eric D. & GOOS, Peter, 2018. "A mixed integer optimization approach for model selection in screening experiments," Working Papers 2018007, University of Antwerp, Faculty of Business and Economics.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0082450. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.