IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0074261.html
   My bibliography  Save this article

ReaDDy - A Software for Particle-Based Reaction-Diffusion Dynamics in Crowded Cellular Environments

Author

Listed:
  • Johannes Schöneberg
  • Frank Noé

Abstract

We introduce the software package ReaDDy for simulation of detailed spatiotemporal mechanisms of dynamical processes in the cell, based on reaction-diffusion dynamics with particle resolution. In contrast to other particle-based reaction kinetics programs, ReaDDy supports particle interaction potentials. This permits effects such as space exclusion, molecular crowding and aggregation to be modeled. The biomolecules simulated can be represented as a sphere, or as a more complex geometry such as a domain structure or polymer chain. ReaDDy bridges the gap between small-scale but highly detailed molecular dynamics or Brownian dynamics simulations and large-scale but little-detailed reaction kinetics simulations. ReaDDy has a modular design that enables the exchange of the computing core by efficient platform-specific implementations or dynamical models that are different from Brownian dynamics.

Suggested Citation

  • Johannes Schöneberg & Frank Noé, 2013. "ReaDDy - A Software for Particle-Based Reaction-Diffusion Dynamics in Crowded Cellular Environments," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-14, September.
  • Handle: RePEc:plo:pone00:0074261
    DOI: 10.1371/journal.pone.0074261
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0074261
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0074261&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0074261?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Elijah Roberts & Andrew Magis & Julio O Ortiz & Wolfgang Baumeister & Zaida Luthey-Schulten, 2011. "Noise Contributions in an Inducible Genetic Switch: A Whole-Cell Simulation Study," PLOS Computational Biology, Public Library of Science, vol. 7(3), pages 1-21, March.
    2. Dimitrios Fotiadis & Yan Liang & Slawomir Filipek & David A. Saperstein & Andreas Engel & Krzysztof Palczewski, 2003. "Rhodopsin dimers in native disc membranes," Nature, Nature, vol. 421(6919), pages 127-128, January.
    3. Steven S Andrews & Nathan J Addy & Roger Brent & Adam P Arkin, 2010. "Detailed Simulations of Cell Biology with Smoldyn 2.1," PLOS Computational Biology, Public Library of Science, vol. 6(3), pages 1-10, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Albert Solernou & Benjamin S Hanson & Robin A Richardson & Robert Welch & Daniel J Read & Oliver G Harlen & Sarah A Harris, 2018. "Fluctuating Finite Element Analysis (FFEA): A continuum mechanics software tool for mesoscale simulation of biomolecules," PLOS Computational Biology, Public Library of Science, vol. 14(3), pages 1-29, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. James C Schaff & Fei Gao & Ye Li & Igor L Novak & Boris M Slepchenko, 2016. "Numerical Approach to Spatial Deterministic-Stochastic Models Arising in Cell Biology," PLOS Computational Biology, Public Library of Science, vol. 12(12), pages 1-23, December.
    2. Echeverria, Carlos & Herrera, José L. & Alvarez-Llamoza, Orlando & Morales, Miguel & Tucci, Kay, 2019. "Damping and clustering into crowded environment of catalytic chemical oscillators," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 517(C), pages 297-306.
    3. Alan Veliz-Cuba & Andrew J Hirning & Adam A Atanas & Faiza Hussain & Flavia Vancia & Krešimir Josić & Matthew R Bennett, 2015. "Sources of Variability in a Synthetic Gene Oscillator," PLOS Computational Biology, Public Library of Science, vol. 11(12), pages 1-23, December.
    4. Yukito Kaneshige & Fumio Hayashi & Kenichi Morigaki & Yasushi Tanimoto & Hayato Yamashita & Masashi Fujii & Akinori Awazu, 2020. "Affinity of rhodopsin to raft enables the aligned oligomer formation from dimers: Coarse-grained molecular dynamics simulation of disk membranes," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-17, February.
    5. Brian Drawert & Andreas Hellander & Ben Bales & Debjani Banerjee & Giovanni Bellesia & Bernie J Daigle Jr. & Geoffrey Douglas & Mengyuan Gu & Anand Gupta & Stefan Hellander & Chris Horuk & Dibyendu Na, 2016. "Stochastic Simulation Service: Bridging the Gap between the Computational Expert and the Biologist," PLOS Computational Biology, Public Library of Science, vol. 12(12), pages 1-15, December.
    6. Robert G Endres & Joseph J Falke & Ned S Wingreen, 2007. "Chemotaxis Receptor Complexes: From Signaling to Assembly," PLOS Computational Biology, Public Library of Science, vol. 3(7), pages 1-9, July.
    7. Rory M Donovan & Jose-Juan Tapia & Devin P Sullivan & James R Faeder & Robert F Murphy & Markus Dittrich & Daniel M Zuckerman, 2016. "Unbiased Rare Event Sampling in Spatial Stochastic Systems Biology Models Using a Weighted Ensemble of Trajectories," PLOS Computational Biology, Public Library of Science, vol. 12(2), pages 1-25, February.
    8. Kudtarkar, Santosh Kumar & Dhadwal, Renu, 2023. "Noise induced bistability in a fluctuating environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 615(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0074261. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.