IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0073813.html
   My bibliography  Save this article

Time- and Task-Dependent Non-Neural Effects of Real and Sham TMS

Author

Listed:
  • Felix Duecker
  • Tom A de Graaf
  • Christianne Jacobs
  • Alexander T Sack

Abstract

Transcranial magnetic stimulation (TMS) is widely used in experimental brain research to manipulate brain activity in humans. Next to the intended neural effects, every TMS pulse produces a distinct clicking sound and sensation on the head which can also influence task performance. This necessitates careful consideration of control conditions in order to ensure that behavioral effects of interest can be attributed to the neural consequences of TMS and not to non-neural effects of a TMS pulse. Surprisingly, even though these non-neural effects of TMS are largely unknown, they are often assumed to be unspecific, i.e. not dependent on TMS parameters. This assumption is inherent to many control strategies in TMS research but has recently been challenged on empirical grounds. Here, we further develop the empirical basis of control strategies in TMS research. We investigated the time-dependence and task-dependence of the non-neural effects of TMS and compared real and sham TMS over vertex. Critically, we show that non-neural TMS effects depend on a complex interplay of these factors. Although TMS had no direct neural effects, both pre- and post-stimulus TMS time windows modulated task performance on both a sensory detection task and a cognitive angle judgment task. For the most part, these effects were quantitatively similar across tasks but effect sizes were clearly different. Moreover, the effects of real and sham TMS were almost identical with interesting exceptions that shed light on the relative contribution of auditory and somato-sensory aspects of a TMS pulse. Knowledge of such effects is of critical importance for the interpretation of TMS experiments and helps deciding what constitutes an appropriate control condition. Our results broaden the empirical basis of control strategies in TMS research and point at potential pitfalls that should be avoided.

Suggested Citation

  • Felix Duecker & Tom A de Graaf & Christianne Jacobs & Alexander T Sack, 2013. "Time- and Task-Dependent Non-Neural Effects of Real and Sham TMS," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-1, September.
  • Handle: RePEc:plo:pone00:0073813
    DOI: 10.1371/journal.pone.0073813
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0073813
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0073813&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0073813?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mark Hallett, 2000. "Transcranial magnetic stimulation and the human brain," Nature, Nature, vol. 406(6792), pages 147-150, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thomas Hoegl & Hartmut Heinrich & Wolfgang Barth & Friedrich Lösel & Gunther H Moll & Oliver Kratz, 2012. "Time Course Analysis of Motor Excitability in a Response Inhibition Task According to the Level of Hyperactivity and Impulsivity in Children with ADHD," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-10, September.
    2. Nelson Espinosa & Jorge Mariño & Carmen de Labra & Javier Cudeiro, 2011. "Cortical Modulation of the Transient Visual Response at Thalamic Level: A TMS Study," PLOS ONE, Public Library of Science, vol. 6(2), pages 1-11, February.
    3. Liu, Dan & Zhao, Song & Luo, Xiaoyuan & Yuan, Yi, 2021. "Synchronization for fractional-order extended Hindmarsh-Rose neuronal models with magneto-acoustical stimulation input," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    4. Kazumasa Uehara & Takuya Morishita & Shinji Kubota & Kozo Funase, 2013. "Change in the Ipsilateral Motor Cortex Excitability Is Independent from a Muscle Contraction Phase during Unilateral Repetitive Isometric Contractions," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-7, January.
    5. Nyeonju Kang & James H Cauraugh, 2017. "Does non-invasive brain stimulation reduce essential tremor? A systematic review and meta-analysis," PLOS ONE, Public Library of Science, vol. 12(9), pages 1-15, September.
    6. Arran T Reader & H Henrik Ehrsson, 2019. "Weakening the subjective sensation of own hand ownership does not interfere with rapid finger movements," PLOS ONE, Public Library of Science, vol. 14(10), pages 1-28, October.
    7. Michael Kennefick & Dana Maslovat & Anthony N Carlsen, 2014. "The Time Course of Corticospinal Excitability during a Simple Reaction Time Task," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-7, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0073813. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.