IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0055083.html
   My bibliography  Save this article

Change in the Ipsilateral Motor Cortex Excitability Is Independent from a Muscle Contraction Phase during Unilateral Repetitive Isometric Contractions

Author

Listed:
  • Kazumasa Uehara
  • Takuya Morishita
  • Shinji Kubota
  • Kozo Funase

Abstract

The aim of this study was to investigate the difference in a muscle contraction phase dependence between ipsilateral (ipsi)- and contralateral (contra)-primary motor cortex (M1) excitability during repetitive isometric contractions of unilateral index finger abduction using a transcranial magnetic stimulation (TMS) technique. Ten healthy right-handed subjects participated in this study. We instructed them to perform repetitive isometric contractions of the left index finger abduction following auditory cues at 1 Hz. The force outputs were set at 10, 30, and 50% of maximal voluntary contraction (MVC). Motor evoked potentials (MEP) were obtained from the right and left first dorsal interosseous muscles (FDI). To examine the muscle contraction phase dependence, TMS of ipsi-M1 or contra-M1 was triggered at eight different intervals (0, 20, 40, 60, 80, 100, 300, or 500 ms) after electromyogram (EMG) onset when each interval had reached the setup triggering level. Furthermore, to demonstrate the relationships between the integrated EMG (iEMG) in the active left FDI and the ipsi-M1 excitability, we assessed the correlation between the iEMG in the left FDI for the 100 ms preceding TMS onset and the MEP amplitude in the resting/active FDI for each force output condition. Although contra-M1 excitability was significantly changed after the EMG onset that depends on the muscle contraction phase, the modulation of ipsi-M1 excitability did not differ in response to any muscle contraction phase at the 10% of MVC condition. Also, we found that contra-M1 excitability was significantly correlated with iEMG in all force output conditions, but ipsi-M1 excitability was not at force output levels of below 30% of MVC. Consequently, the modulation of ipsi-M1 excitability was independent from the contraction phase of unilateral repetitive isometric contractions at least low force output.

Suggested Citation

  • Kazumasa Uehara & Takuya Morishita & Shinji Kubota & Kozo Funase, 2013. "Change in the Ipsilateral Motor Cortex Excitability Is Independent from a Muscle Contraction Phase during Unilateral Repetitive Isometric Contractions," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-7, January.
  • Handle: RePEc:plo:pone00:0055083
    DOI: 10.1371/journal.pone.0055083
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0055083
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0055083&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0055083?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mark Hallett, 2000. "Transcranial magnetic stimulation and the human brain," Nature, Nature, vol. 406(6792), pages 147-150, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thomas Hoegl & Hartmut Heinrich & Wolfgang Barth & Friedrich Lösel & Gunther H Moll & Oliver Kratz, 2012. "Time Course Analysis of Motor Excitability in a Response Inhibition Task According to the Level of Hyperactivity and Impulsivity in Children with ADHD," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-10, September.
    2. Nelson Espinosa & Jorge Mariño & Carmen de Labra & Javier Cudeiro, 2011. "Cortical Modulation of the Transient Visual Response at Thalamic Level: A TMS Study," PLOS ONE, Public Library of Science, vol. 6(2), pages 1-11, February.
    3. Felix Duecker & Tom A de Graaf & Christianne Jacobs & Alexander T Sack, 2013. "Time- and Task-Dependent Non-Neural Effects of Real and Sham TMS," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-1, September.
    4. Liu, Dan & Zhao, Song & Luo, Xiaoyuan & Yuan, Yi, 2021. "Synchronization for fractional-order extended Hindmarsh-Rose neuronal models with magneto-acoustical stimulation input," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    5. Nyeonju Kang & James H Cauraugh, 2017. "Does non-invasive brain stimulation reduce essential tremor? A systematic review and meta-analysis," PLOS ONE, Public Library of Science, vol. 12(9), pages 1-15, September.
    6. Arran T Reader & H Henrik Ehrsson, 2019. "Weakening the subjective sensation of own hand ownership does not interfere with rapid finger movements," PLOS ONE, Public Library of Science, vol. 14(10), pages 1-28, October.
    7. Michael Kennefick & Dana Maslovat & Anthony N Carlsen, 2014. "The Time Course of Corticospinal Excitability during a Simple Reaction Time Task," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-7, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0055083. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.