Author
Listed:
- Tamar Friedlander
- Avraham E Mayo
- Tsvi Tlusty
- Uri Alon
Abstract
Biological systems exhibit two structural features on many levels of organization: sparseness, in which only a small fraction of possible interactions between components actually occur; and modularity – the near decomposability of the system into modules with distinct functionality. Recent work suggests that modularity can evolve in a variety of circumstances, including goals that vary in time such that they share the same subgoals (modularly varying goals), or when connections are costly. Here, we studied the origin of modularity and sparseness focusing on the nature of the mutation process, rather than on connection cost or variations in the goal. We use simulations of evolution with different mutation rules. We found that commonly used sum-rule mutations, in which interactions are mutated by adding random numbers, do not lead to modularity or sparseness except for in special situations. In contrast, product-rule mutations in which interactions are mutated by multiplying by random numbers – a better model for the effects of biological mutations – led to sparseness naturally. When the goals of evolution are modular, in the sense that specific groups of inputs affect specific groups of outputs, product-rule mutations also lead to modular structure; sum-rule mutations do not. Product-rule mutations generate sparseness and modularity because they tend to reduce interactions, and to keep small interaction terms small.
Suggested Citation
Tamar Friedlander & Avraham E Mayo & Tsvi Tlusty & Uri Alon, 2013.
"Mutation Rules and the Evolution of Sparseness and Modularity in Biological Systems,"
PLOS ONE, Public Library of Science, vol. 8(8), pages 1-10, August.
Handle:
RePEc:plo:pone00:0070444
DOI: 10.1371/journal.pone.0070444
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0070444. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.