IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0060954.html
   My bibliography  Save this article

Approximate Subgraph Matching-Based Literature Mining for Biomedical Events and Relations

Author

Listed:
  • Haibin Liu
  • Lawrence Hunter
  • Vlado Kešelj
  • Karin Verspoor

Abstract

The biomedical text mining community has focused on developing techniques to automatically extract important relations between biological components and semantic events involving genes or proteins from literature. In this paper, we propose a novel approach for mining relations and events in the biomedical literature using approximate subgraph matching. Extraction of such knowledge is performed by searching for an approximate subgraph isomorphism between key contextual dependencies and input sentence graphs. Our approach significantly increases the chance of retrieving relations or events encoded within complex dependency contexts by introducing error tolerance into the graph matching process, while maintaining the extraction precision at a high level. When evaluated on practical tasks, it achieves a 51.12% F-score in extracting nine types of biological events on the GE task of the BioNLP-ST 2011 and an 84.22% F-score in detecting protein-residue associations. The performance is comparable to the reported systems across these tasks, and thus demonstrates the generalizability of our proposed approach.

Suggested Citation

  • Haibin Liu & Lawrence Hunter & Vlado Kešelj & Karin Verspoor, 2013. "Approximate Subgraph Matching-Based Literature Mining for Biomedical Events and Relations," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-16, April.
  • Handle: RePEc:plo:pone00:0060954
    DOI: 10.1371/journal.pone.0060954
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0060954
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0060954&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0060954?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Domonkos Tikk & Philippe Thomas & Peter Palaga & Jörg Hakenberg & Ulf Leser, 2010. "A Comprehensive Benchmark of Kernel Methods to Extract Protein–Protein Interactions from Literature," PLOS Computational Biology, Public Library of Science, vol. 6(7), pages 1-19, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alicia Lara-Clares & Juan J Lastra-Díaz & Ana Garcia-Serrano, 2021. "Protocol for a reproducible experimental survey on biomedical sentence similarity," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-28, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peng Su & Gang Li & Cathy Wu & K Vijay-Shanker, 2019. "Using distant supervision to augment manually annotated data for relation extraction," PLOS ONE, Public Library of Science, vol. 14(7), pages 1-17, July.
    2. Kersten Döring & Ammar Qaseem & Michael Becer & Jianyu Li & Pankaj Mishra & Mingjie Gao & Pascal Kirchner & Florian Sauter & Kiran K Telukunta & Aurélien F A Moumbock & Philippe Thomas & Stefan Günthe, 2020. "Automated recognition of functional compound-protein relationships in literature," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-14, March.
    3. Shandar Ahmad & Kenji Mizuguchi, 2011. "Partner-Aware Prediction of Interacting Residues in Protein-Protein Complexes from Sequence Data," PLOS ONE, Public Library of Science, vol. 6(12), pages 1-11, December.
    4. Behrouz Bokharaeian & Alberto Diaz & Hamidreza Chitsaz, 2016. "Enhancing Extraction of Drug-Drug Interaction from Literature Using Neutral Candidates, Negation, and Clause Dependency," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-20, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0060954. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.