IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0059028.html
   My bibliography  Save this article

Impact of Preventive Responses to Epidemics in Rural Regions

Author

Listed:
  • Phillip Schumm
  • Walter Schumm
  • Caterina Scoglio

Abstract

Various epidemics have arisen in rural locations through human-animal interaction, such as the H1N1 outbreak of 2009. Through collaboration with local government officials, we have surveyed a rural county and its communities and collected a dataset characterizing the rural population. From the respondents’ answers, we build a social (face-to-face) contact network. With this network, we explore the potential spread of epidemics through a Susceptible-Latent-Infected-Recovered (SLIR) disease model. We simulate an exact model of a stochastic SLIR Poisson process with disease parameters representing a typical influenza-like illness. We test vaccine distribution strategies under limited resources. We examine global and location-based distribution strategies, as a way to reach critical individuals in the rural setting. We demonstrate that locations can be identified through contact metrics for use in vaccination strategies to control contagious diseases.

Suggested Citation

  • Phillip Schumm & Walter Schumm & Caterina Scoglio, 2013. "Impact of Preventive Responses to Epidemics in Rural Regions," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-11, March.
  • Handle: RePEc:plo:pone00:0059028
    DOI: 10.1371/journal.pone.0059028
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0059028
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0059028&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0059028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Daniel M Cornforth & Timothy C Reluga & Eunha Shim & Chris T Bauch & Alison P Galvani & Lauren Ancel Meyers, 2011. "Erratic Flu Vaccination Emerges from Short-Sighted Behavior in Contact Networks," PLOS Computational Biology, Public Library of Science, vol. 7(1), pages 1-10, January.
    2. Ozgur Araz & Alison Galvani & Lauren Meyers, 2012. "Geographic prioritization of distributing pandemic influenza vaccines," Health Care Management Science, Springer, vol. 15(3), pages 175-187, September.
    3. Marcel Salathé & James H Jones, 2010. "Dynamics and Control of Diseases in Networks with Community Structure," PLOS Computational Biology, Public Library of Science, vol. 6(4), pages 1-11, April.
    4. Caterina Scoglio & Walter Schumm & Phillip Schumm & Todd Easton & Sohini Roy Chowdhury & Ali Sydney & Mina Youssef, 2010. "Efficient Mitigation Strategies for Epidemics in Rural Regions," PLOS ONE, Public Library of Science, vol. 5(7), pages 1-8, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shams, Bita & Khansari, Mohammad, 2015. "On the impact of epidemic severity on network immunization algorithms," Theoretical Population Biology, Elsevier, vol. 106(C), pages 83-93.
    2. Zhang, Hai-Feng & Shu, Pan-Pan & Wang, Zhen & Tang, Ming & Small, Michael, 2017. "Preferential imitation can invalidate targeted subsidy policies on seasonal-influenza diseases," Applied Mathematics and Computation, Elsevier, vol. 294(C), pages 332-342.
    3. Gregory, Steve, 2012. "Ordered community structure in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2752-2763.
    4. Wei Zhong, 2017. "Simulating influenza pandemic dynamics with public risk communication and individual responsive behavior," Computational and Mathematical Organization Theory, Springer, vol. 23(4), pages 475-495, December.
    5. Chen, Dandan & Zheng, Muhua & Zhao, Ming & Zhang, Yu, 2018. "A dynamic vaccination strategy to suppress the recurrent epidemic outbreaks," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 108-114.
    6. Xie, Xiaoxiao & Huo, Liang'an, 2024. "Co-evolution dynamics between information and epidemic with asymmetric activity levels and community structure in time-varying multiplex networks," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    7. Sengul Orgut, Irem & Freeman, Nickolas & Lewis, Dwight & Parton, Jason, 2023. "Equitable and effective vaccine access considering vaccine hesitancy and capacity constraints," Omega, Elsevier, vol. 120(C).
    8. Bowen Yan & Steve Gregory, 2013. "Identifying Communities and Key Vertices by Reconstructing Networks from Samples," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-14, April.
    9. Wu, Di & Hamilton, Hanna & Jagrowski, Liam & Nazzal, Dima & Steimle, Lauren N., 2024. "Revisiting the small-world property of co-enrollment networks: A network analysis of hybrid course delivery strategies," Socio-Economic Planning Sciences, Elsevier, vol. 96(C).
    10. Zhou, Bin & Yan, Xiao-Yong & Xu, Xiao-Ke & Xu, Xiao-Ting & Wang, Nianxin, 2018. "Evolutionary of online social networks driven by pareto wealth distribution and bidirectional preferential attachment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 427-434.
    11. Eugenio Valdano & Chiara Poletto & Armando Giovannini & Diana Palma & Lara Savini & Vittoria Colizza, 2015. "Predicting Epidemic Risk from Past Temporal Contact Data," PLOS Computational Biology, Public Library of Science, vol. 11(3), pages 1-19, March.
    12. Saxena, Chandni & Doja, M.N. & Ahmad, Tanvir, 2018. "Group based centrality for immunization of complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 35-47.
    13. Stephen J Gilmore, 2011. "Control Strategies for Endemic Childhood Scabies," PLOS ONE, Public Library of Science, vol. 6(1), pages 1-14, January.
    14. Kotnis, Bhushan & Kuri, Joy, 2016. "Cost effective campaigning in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 670-681.
    15. Kathrin Büttner & Joachim Krieter & Arne Traulsen & Imke Traulsen, 2013. "Efficient Interruption of Infection Chains by Targeted Removal of Central Holdings in an Animal Trade Network," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-12, September.
    16. Sanjay Mehrotra & Hamed Rahimian & Masoud Barah & Fengqiao Luo & Karolina Schantz, 2020. "A model of supply‐chain decisions for resource sharing with an application to ventilator allocation to combat COVID‐19," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(5), pages 303-320, August.
    17. Li, Qiu & Li, MingChu & Lv, Lin & Guo, Cheng & Lu, Kun, 2017. "A new prediction model of infectious diseases with vaccination strategies based on evolutionary game theory," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 51-60.
    18. Gilani, Hani & Sahebi, Hadi, 2022. "A data-driven robust optimization model by cutting hyperplanes on vaccine access uncertainty in COVID-19 vaccine supply chain," Omega, Elsevier, vol. 110(C).
    19. Jose L Herrera & Ravi Srinivasan & John S Brownstein & Alison P Galvani & Lauren Ancel Meyers, 2016. "Disease Surveillance on Complex Social Networks," PLOS Computational Biology, Public Library of Science, vol. 12(7), pages 1-16, July.
    20. Karikalan Nagarajan & Bharathidasan Palani & Javeed Basha & Lavanya Jayabal & Malaisamy Muniyandi, 2022. "A social networks-driven approach to understand the unique alcohol mixing patterns of tuberculosis patients: reporting methods and findings from a high TB-burden setting," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0059028. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.