IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0053456.html
   My bibliography  Save this article

A Bio-Inspired, Motion-Based Analysis of Crowd Behavior Attributes Relevance to Motion Transparency, Velocity Gradients, and Motion Patterns

Author

Listed:
  • Florian Raudies
  • Heiko Neumann

Abstract

The analysis of motion crowds is concerned with the detection of potential hazards for individuals of the crowd. Existing methods analyze the statistics of pixel motion to classify non-dangerous or dangerous behavior, to detect outlier motions, or to estimate the mean throughput of people for an image region. We suggest a biologically inspired model for the analysis of motion crowds that extracts motion features indicative for potential dangers in crowd behavior. Our model consists of stages for motion detection, integration, and pattern detection that model functions of the primate primary visual cortex area (V1), the middle temporal area (MT), and the medial superior temporal area (MST), respectively. This model allows for the processing of motion transparency, the appearance of multiple motions in the same visual region, in addition to processing opaque motion. We suggest that motion transparency helps to identify “danger zones” in motion crowds. For instance, motion transparency occurs in small exit passages during evacuation. However, motion transparency occurs also for non-dangerous crowd behavior when people move in opposite directions organized into separate lanes. Our analysis suggests: The combination of motion transparency and a slow motion speed can be used for labeling of candidate regions that contain dangerous behavior. In addition, locally detected decelerations or negative speed gradients of motions are a precursor of danger in crowd behavior as are globally detected motion patterns that show a contraction toward a single point. In sum, motion transparency, image speeds, motion patterns, and speed gradients extracted from visual motion in videos are important features to describe the behavioral state of a motion crowd.

Suggested Citation

  • Florian Raudies & Heiko Neumann, 2012. "A Bio-Inspired, Motion-Based Analysis of Crowd Behavior Attributes Relevance to Motion Transparency, Velocity Gradients, and Motion Patterns," PLOS ONE, Public Library of Science, vol. 7(12), pages 1-17, December.
  • Handle: RePEc:plo:pone00:0053456
    DOI: 10.1371/journal.pone.0053456
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0053456
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0053456&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0053456?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dirk Helbing & Illés Farkas & Tamás Vicsek, 2000. "Simulating dynamical features of escape panic," Nature, Nature, vol. 407(6803), pages 487-490, September.
    2. Anders Johansson & Dirk Helbing & Habib Z. Al-Abideen & Salim Al-Bosta, 2008. "From Crowd Dynamics To Crowd Safety: A Video-Based Analysis," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 11(04), pages 497-527.
    3. Michael Batty, 1997. "Predicting where we walk," Nature, Nature, vol. 388(6637), pages 19-20, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Jun & Cui, Haoran & Chraibi, Mohcine & Yu, Hang & Song, Weiguo, 2023. "Velocity-based model for pedestrian dynamics considering direction preferences," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 613(C).
    2. Xiaolin Yang & Zhongliang Wu, 2013. "Civilian monitoring video records for earthquake intensity: a potentially unbiased online information source of macro-seismology," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(3), pages 1765-1781, February.
    3. Liu, Yixue & Mao, Zhanli, 2022. "An experimental study on the critical state of herd behavior in decision-making of the crowd evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 595(C).
    4. Liang, Haoyang & Du, Jie & Wong, S.C., 2021. "A Continuum model for pedestrian flow with explicit consideration of crowd force and panic effects," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 100-117.
    5. Subramanian, Gayathri Harihara & Choubey, Nipun & Verma, Ashish, 2022. "Modelling and simulating serpentine group behaviour in crowds using modified social force model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    6. Li, Xudong & Telesca, Luciano & Lovallo, Michele & Xu, Xuan & Zhang, Jun & Song, Weiguo, 2020. "Spectral and informational analysis of pedestrian contact force in simulated overcrowding conditions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).
    7. Zhang, Dawei & Zhu, Haitao & Hostikka, Simo & Qiu, Shi, 2019. "Pedestrian dynamics in a heterogeneous bidirectional flow: Overtaking behaviour and lane formation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 72-84.
    8. Lian, Liping & Song, Weiguo & Richard, Yuen Kwok Kit & Ma, Jian & Telesca, Luciano, 2017. "Long-range dependence and time-clustering behavior in pedestrian movement patterns in stampedes: The Love Parade case-study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 265-274.
    9. Jiang, Yan-Qun & Zhang, Wei & Zhou, Shu-Guang, 2016. "Comparison study of the reactive and predictive dynamic models for pedestrian flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 441(C), pages 51-61.
    10. Syed, Ahmed & Thampi, Sumesh P. & Panchagnula, Mahesh V., 2022. "Order-stampede transitions in human crowds: The role of individualistic and cooperative forces," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
    11. Cristiani, E. & Menci, M. & Malagnino, A. & Amaro, G.G., 2023. "An all-densities pedestrian simulator based on a dynamic evaluation of the interpersonal distances," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 616(C).
    12. Stock, Eduardo Velasco & da Silva, Roberto, 2023. "Lattice gas model to describe a nightclub dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    13. Varas, A. & Cornejo, M.D. & Mainemer, D. & Toledo, B. & Rogan, J. & Muñoz, V. & Valdivia, J.A., 2007. "Cellular automaton model for evacuation process with obstacles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(2), pages 631-642.
    14. Murilo S Baptista & Hai-Peng Ren & Johen C M Swarts & Rodrigo Carareto & Henk Nijmeijer & Celso Grebogi, 2012. "Collective Almost Synchronisation in Complex Networks," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-11, November.
    15. Xianing Wang & Zhan Zhang & Ying Wang & Jun Yang & Linjun Lu, 2022. "A Study on Safety Evaluation of Pedestrian Flows Based on Partial Impact Dynamics by Real-Time Data in Subway Stations," Sustainability, MDPI, vol. 14(16), pages 1-19, August.
    16. Chen, Changkun & Sun, Huakai & Lei, Peng & Zhao, Dongyue & Shi, Congling, 2021. "An extended model for crowd evacuation considering pedestrian panic in artificial attack," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    17. Michael Batty & Jake Desyllas & Elspeth Duxbury, 2003. "Safety in Numbers? Modelling Crowds and Designing Control for the Notting Hill Carnival," Urban Studies, Urban Studies Journal Limited, vol. 40(8), pages 1573-1590, July.
    18. Ma, Jian & Song, Wei-guo & Zhang, Jun & Lo, Siu-ming & Liao, Guang-xuan, 2010. "k-Nearest-Neighbor interaction induced self-organized pedestrian counter flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(10), pages 2101-2117.
    19. Illés J Farkas & Shuohong Wang, 2018. "Spatial flocking: Control by speed, distance, noise and delay," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-12, May.
    20. Zheng, Yaochen & Chen, Jianqiao & Wei, Junhong & Guo, Xiwei, 2012. "Modeling of pedestrian evacuation based on the particle swarm optimization algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(17), pages 4225-4233.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0053456. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.