IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0049945.html
   My bibliography  Save this article

A Framework to Describe, Analyze and Generate Interactive Motor Behaviors

Author

Listed:
  • Nathanaël Jarrassé
  • Themistoklis Charalambous
  • Etienne Burdet

Abstract

While motor interaction between a robot and a human, or between humans, has important implications for society as well as promising applications, little research has been devoted to its investigation. In particular, it is important to understand the different ways two agents can interact and generate suitable interactive behaviors. Towards this end, this paper introduces a framework for the description and implementation of interactive behaviors of two agents performing a joint motor task. A taxonomy of interactive behaviors is introduced, which can classify tasks and cost functions that represent the way each agent interacts. The role of an agent interacting during a motor task can be directly explained from the cost function this agent is minimizing and the task constraints. The novel framework is used to interpret and classify previous works on human-robot motor interaction. Its implementation power is demonstrated by simulating representative interactions of two humans. It also enables us to interpret and explain the role distribution and switching between roles when performing joint motor tasks.

Suggested Citation

  • Nathanaël Jarrassé & Themistoklis Charalambous & Etienne Burdet, 2012. "A Framework to Describe, Analyze and Generate Interactive Motor Behaviors," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-13, November.
  • Handle: RePEc:plo:pone00:0049945
    DOI: 10.1371/journal.pone.0049945
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0049945
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0049945&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0049945?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Etienne Burdet & Rieko Osu & David W. Franklin & Theodore E. Milner & Mitsuo Kawato, 2001. "The central nervous system stabilizes unstable dynamics by learning optimal impedance," Nature, Nature, vol. 414(6862), pages 446-449, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Atsushi Takagi & Niek Beckers & Etienne Burdet, 2016. "Motion Plan Changes Predictably in Dyadic Reaching," PLOS ONE, Public Library of Science, vol. 11(12), pages 1-15, December.
    2. Rocío Llamas-Ramos & Juan Luis Sánchez-González & Inés Llamas-Ramos, 2022. "Robotic Systems for the Physiotherapy Treatment of Children with Cerebral Palsy: A Systematic Review," IJERPH, MDPI, vol. 19(9), pages 1-12, April.
    3. Jonathan Eden & Mario Bräcklein & Jaime Ibáñez & Deren Yusuf Barsakcioglu & Giovanni Di Pino & Dario Farina & Etienne Burdet & Carsten Mehring, 2022. "Principles of human movement augmentation and the challenges in making it a reality," Nature Communications, Nature, vol. 13(1), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ian S Howard & David W Franklin, 2015. "Neural Tuning Functions Underlie Both Generalization and Interference," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-21, June.
    2. Jack Brookes & Faisal Mushtaq & Earle Jamieson & Aaron J Fath & Geoffrey Bingham & Peter Culmer & Richard M Wilkie & Mark Mon-Williams, 2020. "Exploring disturbance as a force for good in motor learning," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-21, May.
    3. Ashesh Vasalya & Gowrishankar Ganesh & Abderrahmane Kheddar, 2018. "More than just co-workers: Presence of humanoid robot co-worker influences human performance," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-19, November.
    4. Bastien Berret & Frédéric Jean, 2020. "Stochastic optimal open-loop control as a theory of force and impedance planning via muscle co-contraction," PLOS Computational Biology, Public Library of Science, vol. 16(2), pages 1-28, February.
    5. Bastien Berret & Adrien Conessa & Nicolas Schweighofer & Etienne Burdet, 2021. "Stochastic optimal feedforward-feedback control determines timing and variability of arm movements with or without vision," PLOS Computational Biology, Public Library of Science, vol. 17(6), pages 1-24, June.
    6. Aldo Faisal & Dietrich Stout & Jan Apel & Bruce Bradley, 2010. "The Manipulative Complexity of Lower Paleolithic Stone Toolmaking," PLOS ONE, Public Library of Science, vol. 5(11), pages 1-11, November.
    7. Frédéric Crevecoeur & Stephen H Scott, 2013. "Priors Engaged in Long-Latency Responses to Mechanical Perturbations Suggest a Rapid Update in State Estimation," PLOS Computational Biology, Public Library of Science, vol. 9(8), pages 1-14, August.
    8. J Lucas McKay & Lena H Ting, 2012. "Optimization of Muscle Activity for Task-Level Goals Predicts Complex Changes in Limb Forces across Biomechanical Contexts," PLOS Computational Biology, Public Library of Science, vol. 8(4), pages 1-17, April.
    9. Abdelhamid Kadiallah & David W Franklin & Etienne Burdet, 2012. "Generalization in Adaptation to Stable and Unstable Dynamics," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-11, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0049945. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.